首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

3.
1. The effect of total nitrogen (TN) and phosphorus (TP) loading on trophic structure and water clarity was studied during summer in 24 field enclosures fixed in, and kept open to, the sediment in a shallow lake. The experiment involved a control treatment and five treatments to which nutrients were added: (i) high phosphorus, (ii) moderate nitrogen, (iii) high nitrogen, (iv) high phosphorus and moderate nitrogen and (v) high phosphorus and high nitrogen. To reduce zooplankton grazers, 1+ fish (Perca fluviatilis L.) were stocked in all enclosures at a density of 3.7 individuals m?2. 2. With the addition of phosphorus, chlorophyll a and the total biovolume of phytoplankton rose significantly at moderate and high nitrogen. Cyanobacteria or chlorophytes dominated in all enclosures to which we added phosphorus as well as in the high nitrogen treatment, while cryptophytes dominated in the moderate nitrogen enclosures and the controls. 3. At the end of the experiment, the biomass of the submerged macrophytes Elodea canadensis and Potamogeton sp. was significantly lower in the dual treatments (TN, TP) than in single nutrient treatments and controls and the water clarity declined. The shift to a turbid state with low plant coverage occurred at TN >2 mg N L?1 and TP >0.13–0.2 mg P L?1. These results concur with a survey of Danish shallow lakes, showing that high macrophyte coverage occurred only when summer mean TN was below 2 mg N L?1, irrespective of the concentration of TP, which ranged between 0.03 and 1.2 mg P L?1. 4. Zooplankton biomass and the zooplankton : phytoplankton biomass ratio, and probably also the grazing pressure on phytoplankton, remained overall low in all treatments, reflecting the high fish abundance chosen for the experiment. We saw no response to nutrition addition in total zooplankton biomass, indicating that the loss of plants and a shift to the turbid state did not result from changes in zooplankton grazing. Shading by phytoplankton and periphyton was probably the key factor. 5. Nitrogen may play a far more important role than previously appreciated in the loss of submerged macrophytes at increased nutrient loading and for the delay in the re‐establishment of the nutrient loading reduction. We cannot yet specify, however, a threshold value for N that would cause a shift to a turbid state as it may vary with fish density and climatic conditions. However, the focus should be widened to use control of both N and P in the restoration of eutrophic shallow lakes.  相似文献   

4.
Eutrophication of the Baltic Sea has become a serious concern in recent decades. To provide a potential means for quality assessments of coastal waters in this area, we collected a data set of 49 embayments in the Gulf of Finland, and explored the relationship between surface sediment diatom assemblages and 15 environmental variables, with special emphasis on nutrients. Total dissolved nitrogen, total phosphorus, depth, and salinity all accounted for significant and independent fractions of variation in the diatom data and explained 34% of the total variation. There were clear changes in diatom assemblage structures along the nutrient gradients. Although these changes were gradual, we could identify a number of taxa that were more abundant in a particular nutrient environment. These taxa could be used as potential indicators of the quality of coastal waters in the Baltic Sea. Diatom assemblages that were least affected by nutrient enrichment included a variety of benthic species and a relatively high species richness. Small planktonic taxa such as Cyclotella atomus Hustedt, Cyclotella meneghiniana Kützing and Thalassiosira pseudonana Hasle and Heimdal were good indicators of highly elevated nutrient concentrations (>600 lg·L?1 total dissolved nitrogen and 60 lg·L?1 total phosphorus) together with low species richness. The first appearance of these small planktonic taxa in regular monitoring could be used as an early warning sign for deteriorating water quality. Diatoms could be applied to water quality classification and monitoring purposes in the coastal waters of the Baltic Sea area using techniques such as weighted‐averaging regression and calibration.  相似文献   

5.
Microalgae biofuel production can be feasible when a second function is added, such as wastewater treatment. Microalgae differ in uptake of phosphorus (P) and growth, making top performer identification fundamental. The objective of this screen was to identify dual‐purpose candidates capable of high rates of P removal and growth. Three freshwater – Chlorella sp., Monoraphidium minutum sp., and Scenedesmus sp. – and three marine – Nannochloropsis sp., N. limnetica sp., and Tetraselmis suecica sp. – species were batch cultured in 250 mL flasks over 16 days to quantitate total phosphorus (TP) removal and growth as a function of P loads (control, and 5, 10, and 15 mg L?1 enrichment of control). Experimental design used 100 μmol m?2 s?1 of light, a light/dark cycle of 14/10 h, and no CO2 enrichment. Phosphorus uptake was dependent on species, duration of exposure, and treatment, with significant interaction effects. Growth was dependant on species and treatment. Not all species showed increased P removal with increasing P addition, and no species demonstrated higher growth. Nannochloropsis sp and N. limnetica sp. performed poorly across all treatments. Two dual‐purpose candidates were identified. At the 10 mg L?1 treatment Monoraphidium minutum sp. removed 67.1% (6.66 mg L?1 ± 0.60 SE) of TP at day 8, 79.3% (7.86 mg L?1 ± 0.28 SE) at day 16, and biomass accumulation of 0.63 g L?1 ± 0.06 SE at day 16. At the same treatment Tetraselmis suecica sp. removed 79.4% (6.98 mg L?1 ± 0.24 SE) TP at day 8, 83.0% (7.30 mg L?1 ± 0.60 SE) at day 16, and biomass of 0.55 g L?1 ± 0.02 SE at day 16. These species merit further study using high‐density wastewater cultures and lipid profiling to assess suitability for a nutrient removal and biomass/biofuel production scheme.  相似文献   

6.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

7.
A survey was conducted to examine spatial variations in the population density of major meiofaunal taxa and the assemblage structure of free-living marine nematodes within 5 mangrove areas on the west and east coast of Zanzibar. Meiofauna densities in surface sediments (0–5 cm) ranged from 205 to 5263 ind. 10 cm2, being on average 1493 ind. 10 cm2. Of the 17 major taxa recorded, nematodes dominated (64–99%) in all samples while harpacticoid copepods were usually second most abundant. Within all areas the numbers of meiofauna were very variable and significant differences among areas were only detected for oligochaetes and turbellarians. Densities of nematodes, harpacticoids, polychaetes and turbellarians were, however, significantly (P<0.001) higher at low water stations compared with mid and high water stations. Harpacticoids were negatively correlated with the numbers of fiddler crab (Uca spp.) burrows. Other correlations between environmental factors (grain size, temperature, salinity, oxygen tension, prop root density, fiddler crab burrows) and major meiofaunal taxa were non-significant. A total of 94 nematode genera were recorded from four mangrove areas. The most abundant and frequent genera were Microlaimus and Spirinia, followed by Desmodora and Metachromadora. Representatives of the genera most common in current study are found all over the globe. There was a high variation in nematode assemblage structure within and between sampling areas indicating the absence of a well defined nematode assemblage confined to mangrove areas. In a hypersaline area diversity was much reduced and where salinity was over 100%. the fauna was restricted to 3 nematode genera, Microlaimus, Theristus and Bathylaimus. Multidimensional scaling ordination (MDS) of the nematode genera separated samples taken from low water stations from other stations, the assemblage structure being significantly different at the low water stations. Numbers of selective deposit feeders were negatively correlated with average grain size and positively correlated with silt content.  相似文献   

8.
  • 1 A dense population of a large (over 6.5mm long), semiaquatic, predatory nematode Anatonchus dolichurus was found in the delta of the River Dokka, Norway. This is the first time it has been reported in surface fresh waters.
  • 2 Nematode distribution was related to water depth, with maximum abundance (over 24000 ind.m?2) occurring in shallow areas (0.5–2.0m). Sediments at all stations with a high density of A. dolichurus were dry and exposed to air and ice during winter and early spring, and overgrown with macrophytes during summer.
  • 3 This predator contributed a greater fraction of total numbers and biomass of the nematode fauna than predatory forms in other known freshwater nematode assemblages. It constituted up to 15.6% of numbers and up to 90% of total nematode biomass.
  • 4 Anatonchus dolichurus preyed on Nematoda, small Oligochaeta (mainly Enchyrraeidae) and Chironomidae. It was able to reduce the density of these meiofaunal taxa when present in large numbers in experimental cores.
  相似文献   

9.
In the present study, process engineering strategy was applied to achieve lipid-rich biomass with high density of Chlorella sp. FC2 IITG under photoautotrophic condition. The strategy involved medium optimization, intermittent feeding of limiting nutrients, dynamic change in light intensity, and decoupling growth and lipid induction phases. Medium optimization was performed using combinations of artificial neural network or response surface methodology with genetic algorithm (ANN-GA and RSM-GA). Further, a fed-batch operation was employed to achieve high cell density with intermittent feeding of nitrate and phosphate along with stepwise increase in light intensity. Finally, mutually exclusive biomass and lipid production phases were decoupled into two-stage cultivation process: biomass generation in first stage under nutrient sufficient condition followed by lipid enrichment through nitrogen starvation. The key findings were as follows: (i) ANN-GA resulted in an increase in biomass titer of 157 % (0.95 g L?1) in shake flask and 42.8 % (1.0 g L?1) in bioreactor against unoptimized medium at light intensity of 20 μE m?2 s?1; (ii) further optimization of light intensity in bioreactor gave significantly improved biomass titer of 5.6 g L?1 at light intensity of 250 μE m?2 s?1; (iii) high cell density of 13.5 g L?1 with biomass productivity of 675 mg L?1 day?1 was achieved with dynamic increase in light intensity and intermittent feeding of limiting nutrients; (iv) finally, two-phase cultivation resulted in biomass titer of 17.7 g L?1 and total lipid productivity of 313 mg L?1 day?1 which was highest among Chlorella sp. under photoautotrophic condition.  相似文献   

10.
Metal oxyhydroxide precipitates that form from acid mine drainage (AMD) may indirectly limit periphyton by sorbing nutrients, particularly P. We examined effects of nutrient addition on periphytic algal biomass (chl a), community structure, and carbon and nitrogen content along an AMD gradient. Nutrient diffusing substrata with treatments of +P, +NP and control were placed at seven stream sites. Conductivity and SO4 concentration ranged over an order of magnitude among sites and were used to define the AMD gradient, as they best indicate mine discharge sources of metals that create oxyhydroxide precipitates. Aqueous total phosphorous (TP) ranged from 2 to 23 μg · L?1 and significantly decreased with increasing SO4. Mean chl a concentrations at sites ranged from 0.2 to 8.1 μg · cm?2. Across all sites, algal biomass was significantly higher on +NP than control treatments (Co), and significantly increased with +NP. The degree of nutrient limitation was determined by the increase in chl a concentration on +NP relative to Co (response ratio), which ranged from 0.6 to 9.7. Response to nutrient addition significantly declined with increasing aqueous TP, and significantly increased with increasing SO4. Thus, nutrient limitation of algal biomass increased with AMD impact, indicating metal oxyhydroxides associated with AMD likely decreased P availability. Algal species composition was significantly affected by site but not nutrient treatment. Percent carbon content of periphyton on the Co significantly increased with AMD impact and corresponded to an increase in the relative abundance of Chlorophytes. Changes in periphyton biomass and cellular nutrient content associated with nutrient limitation in AMD streams may affect higher trophic levels.  相似文献   

11.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

12.
To evaluate the effects of a deposit-feeding bivalve on meiobenthic assemblage structure in muddy habitats, a laboratory experiment was performed at the Askö Laboratory in the northwestern Baltic proper. Microcosms, surface area 104 cm2, containing a c. 7-cm thick layer of sieved (0.5 mm) sublittoral mud were established in June 1990. Two months later the tellinid bivalve Macoma balthica was added in quantities varying from 0 to 40 individuals per microcosm. After 5 months the effects of the bivalves on the meiofauna were surprisingly small. The density of harpacticoid copepods was lowest (P <0.05) in microcosms containing a high density of M. balthica. It is suggested that competition for food resources was responsible for this pattern. For all other meiofaunal groups, including nematodes which were the most abundant taxon (99%), no significant differences (P>0.05) were observed among treatments. The assemblage structure of the nematodes was similar between treatments. The vertical distribution of both major taxa and nematode species appeared to be unaffected by the presence of the bivalve.  相似文献   

13.
1. The ciliate and metazoan meiofaunal assemblages of two contrasting lowland streams in south‐east England were examined over the period of a year, using a high taxonomic resolution. Monthly samples were taken from an oligotrophic, acid stream (Lone Oak) and a circumneutral, nutrient‐rich stream (Pant) between March 2003 and February 2004. 2. We assessed the relative importance of ciliates and rotifers within the small‐sized benthic assemblage with respect to their abundance, biomass and species richness. In addition, we examined the influence of abiotic and biotic parameters and season on the assemblage composition at two levels of taxonomic resolution (species and groups). 3. Ciliates dominated the assemblages numerically, with maximum densities of over 900 000 and 6 000 000 ind. m?2 in Lone Oak and Pant respectively. Rotifers and nematodes dominated meiofaunal densities, although their contribution to total meiofaunal biomass (maxima of 71.9 mgC m?2 in Lone Oak and of 646.8 mgC m?2 in the Pant) was low and rotifer biomass equalled that of ciliates. 4. Although the two streams differed in terms of total abundance of ciliates and meiofauna and shared only 7% of species, the relative proportion of groups was similar. Sediment grain size distribution (the percentile representing the 0.5–1 mm fraction) was correlated with assemblage structure at the species level, revealing the tight coupling between these small organisms and their physical environment. Seasonal changes in the relative abundance of groups followed similar patterns in both streams, and were correlated with the abundance of cyclopoid copepods and temperature. 5. Information on these highly abundant but often overlooked faunal groups is essential for estimates of overall abundance, biomass, species richness and productivity in the benthos, and as such has important implications for several areas of aquatic research, e.g. for those dealing with trophic dynamics.  相似文献   

14.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

15.
A natural assemblage of microalgae from a facultative lagoon system treating municipal wastewater was enriched for growth in the effluents of an anaerobic digester processing dairy waste. A green microalga with close resemblance to Chlorella sp. was found to be dominant after multiple cycles of sub‐culturing. Subsequently, the strain (designated as LLAI) was isolated and cultivated in 20× diluted digester effluents under various incident light intensities (255–1,100 µmoles m?2 s?1) to systematically assess growth and nutrient utilization. Our results showed that LLAI production increased with increasing incident light and a maximum productivity of 0.34 g L?1 d?1 was attained when the incident irradiance was 1,100 µmoles m?2 s?1. Lack of growth in the absence of light indicated that the cultures did not grow heterotrophically on the organic compounds present in the medium. However, the cultures were able to uptake organic N and P under phototrophic conditions and our calculations suggest that the carbon associated with these organic nutrients contributed significantly to the production of biomass. Overall, under high light conditions, LLAI cultures utilized half of the soluble organic nitrogen and >90% of the ammonium, orthophosphate, and dissolved organic phosphorus present in the diluted waste. Strain LLAI was also found to accumulate triacylglycerides (TAG) even before the onset of nutrient limitation and a lipid productivity of 37 mg‐TAG L?1 d?1 was measured in cultures incubated at an incident irradiance of 1,100 µmoles m?2 s?1. The results of this study suggest that microalgae isolates from natural environments are well‐suited for nutrient remediation and biomass production from wastewater containing diverse inorganic and organic nutrient species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1336–1342, 2016  相似文献   

16.
The aim of the study was to determine the reduction of the overall environmental load (in terms of organic and nutrient load) in effluents of a flow‐through trout farm. Effluents of a flow‐through system for rainbow trout (Oncorhynchus mykiss) production passed through constructed wetlands with free water surface. Removal of nutrients was determined in three wetlands of 350 m2 each at hydraulic residence times (HRTs) of 3.5, 5.5 and 11 h. The areal load of total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) varied in terms of HRTs from 12.3–36.8 g m?2 day?1, 21.7–65.2 g m?2 day?1, 0.23–0.70 g m?2 day?1, and 1.46–4.37 g m?2 day?1. Values for reduction of suspended solids, COD, TP, and TN were 67–72%, 30–31%, 41–53% ,and 19–30%, respectively. Significantly lower nutrient concentrations in the effluent among the wetlands were only found for nitrogen parameters: TN and ammonia concentrations were lower in the wetlands with a HRT of 5.5 h (0.89 mg L?1, 0.11 mg L?1) and 11 h (0.81 mg L?1, 0.11 mg L?1) compared with the one with 3.5 h (0.96 mg L?1, 0.16 mg L?1).  相似文献   

17.
1. We compared the baseline phosphorus (P) concentrations inferred by diatom‐P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2–200 μg TP L?1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 μg TP L?1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 μg TP L?1 in only 4). 3. The difference between baseline and present‐day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long‐term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre‐enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in‐lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over‐estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.  相似文献   

18.
A survey of the spatial distribution of benthic macroalgae in a fluvial lake of the St. Lawrence River (Lake Saint‐Pierre, Quebec, Canada) revealed a shift in composition from chlorophytes to cyanobacteria along the flow path of nutrient‐rich waters originating from tributaries draining farmlands. The link between this shift and changes in water quality characteristics was investigated by sampling at 10 sites along a 15 km transect. Conductivity, current, light extinction, total phosphorus (TP; >25 μg P · L?1), and ammonium (8–21 μg N · L?1) remained fairly constant along the transect in contrast to nitrate concentrations, which fell sharply. Filamentous and colonial chlorophytes [Cladophora sp. and Hydrodictyon reticulatum (L.) Bory] dominated in the first 5 km where nitrate concentrations were >240 μg N · L?1. A mixed assemblage of chlorophytes and cyanobacteria characterized a 1 km transition zone where nitrate decreased to 40–80 μg N · L?1. In the last section of the transect, nitrate concentrations dropped below 10 μg N · L?1, and cyanobacteria (benthic filamentous mats of Lyngbya wollei Farl. ex Gomont and epiphytic colonies of Gloeotrichia) dominated the benthic community. The predominance of nitrogen‐fixing, potentially toxic cyanobacteria likely resulted from excessive nutrient loads and may affect nutrient and trophic dynamics in the river.  相似文献   

19.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

20.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号