首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we analysed chromosome number variation and chromomycin A3/4′,6‐diamidino‐2‐phenylindole (CMA/DAPI) banding patterns in 48 species belonging to 12 genera of subtribe Pleurothallidinae (Orchidaceae) in order to understand the chromosome evolution based on recent phylogenetic hypotheses and taxonomic treatments. All species had small chromosomes, with numbers ranging from 2n = 20 in two Specklinia spp. to 2n = 80 in an unidentified Octomeria sp. In Acianthera, the most highly represented genus in this study, a great diversity of chromosome number and pattern of fluorescent bands was observed, showing heterochromatin accumulation in Acianthera section Sicariae subsection Pectinatae. Interspecific ascending and, mainly, descending dysploidy were the main mechanisms of chromosome number evolution in subtribe Pleurothallidinae. For Pleurothallidinae, x = 20 is suggested as the basic chromosome number, the same suggested for the related subtribe Laeliinae and for the whole tribe Epidendreae. The Brazilian species of the mega‐genus Stelis had chromosomes with small amounts of heterochromatin and chromosome numbers based on x2 = 16. These are generally divergent from those reported for Andean and Meso‐American species, but in agreement with the monophyletic hypothesis proposed for Stelis spp. with a Brazilian Atlantic distribution. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 102–120.  相似文献   

2.
The chromosomal loci of 5S and 45S ribosomal DNAs (rDNAs) and the activity of nucleolar‐organizing regions (NORs) were analysed in perennial oats of the genera Ammophila, Amphibromus, Arrhenatherum, Avena, Deschampsia, and Helictotrichon s.l. (Poaceae: Aveneae) using fluorescence in situ hybridization, staining with chromomycin/4′,6‐diamidino‐2‐phenylindole (DAPI), and silver impregnation. All chromosomes with a secondary constriction were nucleolar active. In chromosomes without a secondary constriction, NORs corresponded exclusively to broad bands of 45S rDNA with chromomycin‐positive, DAPI‐negative, and silver‐positive stainability. Additional minor bands of 45S rDNA showed no nucleolar activity. 5S rDNA was localized mostly in loci different from the nucleolar‐active 45S rDNA. If both rDNAs occurred within the same chromosome, they were at largely corresponding distances from the centromere, irrespective of their particular localization in either the same chromosome arm or in opposite arms. In the latter case, 5S rDNA was never more distal to the centromere than 45S rDNA. A new model was devised to explain this non‐random distribution of both rDNAs in nucleolar‐organizing chromosomes, which identified the Rabl orientation of chromosomes as ensuring a spatial proximity of 5S to 45S rDNA in interphase nuclei, even if they were localized in opposite arms. The possible role of the Rabl orientation in determining the spread and accumulation of 5S rDNA sequences in further chromosomes of the genome was discussed. B chromosomes were devoid of 5S rDNA, but most contained 45S rDNA and were nucleolar active. In some large groups of species, the number and arrangement of 5S and 45S rDNA sites in the chromosomes were remarkably uniform, especially in Helictotrichon subgenus Helictotrichon and Helictotrichon subgenus Pratavenastrum. Such distribution patterns have survived many speciation processes and have also remained widely unchanged in polyploids. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155 , 193–210.  相似文献   

3.
Combining molecular cytogenetics and phylogenetic modelling of chromosome number change can shed light on the types of evolutionary changes that may explain the haploid numbers observed today. Applied to the monocot family Araceae, with chromosome numbers of 2n = 8 to 2n = 160, this type of approach has suggested that descending dysploidy has played a larger role than polyploidy in the evolution of the current chromosome numbers. To test this, we carried out molecular cytogenetic analyses in 14 species from 11 genera, using probes for telomere repeats, 5S rDNA and 45S rDNA and a plastid phylogenetic tree covering the 118 genera of the family, many with multiple species. We obtained new chromosome counts for six species, modelled chromosome number evolution using all available counts for the family and carried out fluorescence in situ hybridization with three probes (5S rDNA, 45S rDNA and Arabidopsis‐like telomeres) on 14 species with 2n = 14 to 2n = 60. The ancestral state reconstruction provides support for a large role of descending dysploidy in Araceae, and interstitial telomere repeats (ITRs) were detected in Anthurium leuconerum, A. wendlingeri and Spathyphyllum tenerum, all with 2n = 30. The number of ITR signals in Anthurium (up to 12) is the highest so far reported in angiosperms, and the large repeats located in the pericentromeric regions of A. wendlingeri are of a type previously reported only from the gymnosperms Cycas and Pinus. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 15–26.  相似文献   

4.
Abstract Molecular cytogenetics studies of A‐T‐rich regions, telomeres, and 5S and 45S rDNA sites on the chromosomes of Reichardia tingetana Roth (2n= 16; diploid) were done using 4′, 6‐diamidino‐2‐phenylindole (DAPI) and fluorescence in situ hybridization (FISH). The species were collected from three geographically isolated populations at Borg El Arab (salt marsh habitat), and Rashed and Shosha (sandy clay habitats) in Egypt. The three populations showed the chromosome number of all plants are diploid except for two tetraploid samples from Shosha. Plants from both Rashed and Shosha showed similarity in the distribution of six DAPI bands on six chromosomes, whereas those of Borg El Arab showed a distribution of 16 bands on 14 chromosomes. The FISH signals of the telomeres, and 5S and 45S rDNA, were at the telomeres of all chromosomes, two interstitial, and four terminal, respectively. The combination of DAPI and FISH showed colocalization of the DAPI bands with two 5S and two 45S rDNA loci. The increased number of DAPI bands in the cytotypes from the salt marsh habitat could indicate natural genetic adaptation through increasing the heterochromatin of A‐T‐rich regions.  相似文献   

5.
  • Orchidaceae is a widely distributed plant family with very diverse vegetative and floral morphology, and such variability is also reflected in their karyotypes. However, since only a low proportion of Orchidaceae has been analysed for chromosome data, greater diversity may await to be unveiled. Here we analyse both genome size (GS) and karyotype in two subtribes recently included in the broadened Maxillariinea to detect how much chromosome and GS variation there is in these groups and to evaluate which genome rearrangements are involved in the species evolution.
  • To do so, the GS (14 species), the karyotype – based on chromosome number, heterochromatic banding and 5S and 45S rDNA localisation (18 species) – was characterised and analysed along with published data using phylogenetic approaches.
  • The GS presented a high phylogenetic correlation and it was related to morphological groups in Bifrenaria (larger plants – higher GS). The two largest GS found among genera were caused by different mechanisms: polyploidy in Bifrenaria tyrianthina and accumulation of repetitive DNA in Scuticaria hadwenii. The chromosome number variability was caused mainly through descending dysploidy, and x=20 was estimated as the base chromosome number.
  • Combining GS and karyotype data with molecular phylogeny, our data provide a more complete scenario of the karyotype evolution in Maxillariinae orchids, allowing us to suggest, besides dysploidy, that inversions and transposable elements as two mechanisms involved in the karyotype evolution. Such karyotype modifications could be associated with niche changes that occurred during species evolution.
  相似文献   

6.
7.
Chromosome data are fundamental in evolution. However, there has been no attempt to synthesize and evaluate the significance of such information from a phylogenetic perspective in the giant genus Solanum, which was the aim of this work. New and published information of the main cytotaxonomic features (chromosome number, polyploidy, total length of the haploid complement, mean chromosome length, mean arm ratio, karyotype formula, nuclear DNA amount, number/position of rDNA sites) was compiled and mapped onto an embracing Solanaceae phylogeny, performing Ancestral States Reconstruction. There were 506 Solanum species with chromosome counts (49.7% from an estimated total of 1,018 spp.), with x?=?12 being the most frequent number (97%). Species with karyotypes represent 18.8%, while 8% have been studied with any molecular cytogenetic technique. Chromosome characters showed transitions associated with supported nodes, some of which have undergone fewer transitions than others. The common ancestor of all Solanum was a diploid with 2n?=?24, a karyotype with st and/or t chromosomes, 2C DNA content of 1–1.2 pg, one locus of 18–5.8–26S rDNA and one of 5S, both loci being asyntenic. The chromosomal variables behave as homoplastic, with reversions in all branches. The analysed characters were sorted from more to less conserved: asynteny of rDNA loci; number of sites of 18–5.8–26S; chromosome number; karyotype formula; number of 5S loci. This pattern of chromosomal evolution distinguishes Solanum from closely related genera and from genera from other families with a similar number of species.  相似文献   

8.
Changes in chromosome structure and number play an important role in plant evolution. This was investigated in the Neotropical epiphytic cacti: all Lepismium spp. and some related Rhipsalis spp. Both genera have species with disjunct distributions between the paranas of south‐eastern Brazil and north‐eastern Argentina and the yungas forests of the eastern Andes. Karyotypes, fluorescent banding and fluorescence in situ hybridization (FISH) studies using rDNA probes were performed. A time‐calibrated phylogenetic tree was generated to place the karyological information and biogeographical history in an explicit evolutionary context. All species were 2n = 22 and showed symmetrical karyotypes comprising only metacentric chromosomes of similar sizes. The heterochromatin bands were always associated with chromosome satellites coinciding with the location and number of the 18S–5.8S–26S rDNA loci. The 5S rDNA loci had more heterogeneous profiles with one or two loci per haploid genome. Phylogenetic analysis suggested an ancient duplication event of the 5S rDNA loci and more recent post‐speciation translocation and deletion events. These genome restructurings are estimated to have occurred approximately 13.98 Mya in the middle Miocene, after Lepismium and Rhipsalis diverged. The ancestor of Lepismium may have had a similar karyotype to L. lumbricoides and the Rhipsalis spp. (i.e. one 5S locus on chromosome 2). Both genera hypothetically originated in the yungas (north‐eastern Argentina and southern Bolivia), but diversification of the Lepismium crown group probably originated from populations with duplicated 5S loci in the parana forests of south‐eastern Brazil (8.70 Mya in the late Miocene). Two migration events between the yungas and parana forests were suggested to explain the extant distribution of Lepismium spp. These results make Lepismium a model system for the study of the complex chromosomal evolution in plants. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 263–277.  相似文献   

9.
Sequence data for internal transcribed spacer (ITS) and partial external transcribed spacer (ETS) regions were combined in a phylogenetic analysis with previously obtained plastid DNA restriction site data to provide a comprehensive molecular phylogenetic hypothesis for derived members of subtribe Helianthinae. Analyses of the two molecular datasets provided conflicting evidence on relationships among some groups, supporting the hypothesis that hybridization has played a significant role in the divergence of the subtribe. A revised generic‐level classification is presented that divides the approximately 350 species of the subtribe among 21 genera. The paraphyletic Viguiera is narrowed to embrace only the type species, V. dentata. Four newly described genera, Dendroviguiera, Gonzalezia, Heiseria and Sidneya, are composed of species formerly included in Viguiera. Aldama is expanded to include 118 species extending from southwestern North America and Mexico to South America. This requires 116 new combinations, including 58 that were recently transferred into Rhysolepis, which is a synonym of Aldama, based on molecular phylogenetic results. One species of Viguiera is transferred to Tithonia, and two combinations in Hymenostephium are validated. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 167 , 311–331.  相似文献   

10.
The evolution of genome size and ribosomal DNA (rDNA) locus organization was analysed in 23 diploid species of Chenopodium s.l., all of which share the same base chromosome number of x = 9. Phylogenetic relationships among these species were inferred from plastid and nuclear ribosomal internal transcribed spacer (nrITS) DNA sequences. The molecular phylogenetic analyses assigned all analysed species of Chenopodium s.l. to six evolutionary lineages, corresponding to the recent new generic taxonomic treatment of Chenopodium s.l. The distribution of rDNA loci for four species is presented here for the first time using fluorescence in situ hybridization (FISH) with 5S and 35S rDNA probes. Most of the 23 analysed diploid Chenopodium spp. possessed a single subterminally located 35S rDNA locus, except for three species which possessed two 35S rDNA loci. One or two 5S rDNA loci were typically localized subterminally on chromosomes, rarely interstitially. Analyses of rDNA locus numbers in a phylogenetic context resulted in the reconstruction of one locus each of 35S rDNA and 5S rDNA, both in subterminal positions, as the ancestral state. Genome sizes determined using flow cytometry were relatively small (2C value < 2.8 pg), ranging from 0.734 pg in C. schraderianum to 2.721 pg in C. californicum (nearly four‐fold difference), and were often conserved within major phylogenetic lineages, suggesting an adaptive value. The reconstructed ancestral genome size was small for all evolutionary lineages, and changes have probably coincided with the divergence of major lineages. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 218–235.  相似文献   

11.
Paratelmatobius and Scythrophrys are leptodactylid frogs endemic to the Brazilian Atlantic forest and their close phylogenetic relationship was recently inferred in an analysis that included Paratelmatobius sp. and S. sawayae. To investigate the interspecific relationships among Paratelmatobius and Scythrophrys species, we analyzed a mitochondrial region (approximately 2.4 kb) that included the ribosomal genes 12S and 16S and the tRNAval in representatives of all known localities of these genera and in 54 other species. Maximum parsimony inferences were done using PAUP* and support for the clades was evaluated by bootstrapping. A cytogenetic analysis using Giemsa staining, C-banding and silver staining was also done for those populations of Paratelmatobius not included in previous cytogenetic studies of this genus in order to assess their karyotype differentiation. Our results suggested Paratelmatobius and Scythrophrys formed a clade strongly supported by bootstrapping, which corroborated their very close phylogenetic relationship. Among the Paratelmatobius species, two clades were identified and corroborated the groups P. mantiqueira and P. cardosoi previously proposed based on morphological characters. The karyotypes of Paratelmatobius sp. 2 and Paratelmatobius sp. 3 described here had diploid chromosome number 2n = 24 and showed many similarities with karyotypes of other Paratelmatobius representatives. The cytogenetic data and the phylogenetic analysis allowed the proposal/corroboration of several hypotheses for the karyotype differentiation within Paratelmatobius and Scythrophrys. Namely the telocentric pair No. 4 represented a synapomorphy of P. cardosoi and Paratelmatobius sp. 2, while chromosome pair No. 5 with interstitial C-bands could be interpreted as a synapomorphy of the P. cardosoi group. The NOR-bearing chromosome No. 10 in the karyotype of P. poecilogaster was considered homeologous to chromosome No. 10 in the karyotype of Scythrophrys sp., chromosome No. 9 in the karyotype of Paratelmatobius sp. 1, chromosome No. 8 in the karyotypes of Paratelmatobius sp. 2 and of Paratelmatobius sp. 3, and chromosome No. 7 in the karyotype of P. cardosoi. A hypothesis for the evolutionary divergence of these NOR-bearing chromosomes, which probably involved events like gain in heteochromatin, was proposed.  相似文献   

12.
Cytogenetic studies in triatomines have described the occurrence of holokinetic chromosomes, heterochromatin distribution and the location of rDNA (ribosomal DNA) sites, but few aspects of nuclear organization in this group have been discussed. We have focused on ultrastructural and cytogenetic features and differences in cystic cells of seminiferous tubules between five species of Triatoma. Cystic cells showed evidence of polyploidy events and heterochromatic blocks appeared predominantly in the central region of the nuclei. Cytogenetic analyses showed that there was variation in chromocenter number between species, and that the central regions were AT‐rich [DAPI+ (4′,6‐diamidino‐2‐phenylindole+)], whereas the periphery was CG‐rich (CMA+). Another characteristic was the distribution of 45S rDNA, which differed according to the chromosomal location of this sequence. In all we have compared aspects of nuclear organization, polyploidy, heterochromatin, rDNA site distribution and methylation levels, as well as the relationships between five species of Triatoma from a cystic cell perspective.  相似文献   

13.
The pattern of localization of the ribosomal genes was studied by means of fluorescence in situ hybridization in 39 species of the tribe Harpalini. Most of them show one pair of autosomes carrying the ribosomal genes in a distal position of a single chromosome arm. This pattern is hypothesized to be ancestral for the whole tribe. Both, chromosome number and the number and localization of rDNA loci, show little variation and are therefore of little phylogenetic value. Only in the subtribe Ditomina is there enough variation to characterize phyletic relationships. The stability of rDNA loci is even higher than the constancy of chromosome number, as most species of Ditomina (genera Dixus, Eocarterus, Carterus, Odontocarus and Ditomus) have the usual pair of autosomes with rDNA loci, in spite of remarkable differences in the diploid number. Only Dixus sphaerocephalus and Dixus clypeatus have two autosomal pairs with a fluorescent signal. These results do not support the hypothesis that the high chromosome numbers found within Ditomina are the result of polyploid change from the ancestral 2n = 37 karyotype of the tribe Harpalini. Chromosomal translocations or the presence of mobile genetic elements are plausible sources of the few cases of intraspecific polymorphism in the rDNA loci found in species of Harpalus.  相似文献   

14.

Background and Aims

Species'' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species'' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species'' identification.

Methods

Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes.

Key Results

Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularisC. madida’ and ‘C. ferdinandianaC. neowiedii’ species'' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands.

Conclusions

The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic data proved to be a valuable source of information to understand evolutionary patterns within Maxillariinae orchids.Key words: Chromosome number, Christensonella, Cymbidieae, cytotaxonomy, fluorochrome staining, Maxillaria, Maxillariinae, molecular phylogenetics, species delimitation  相似文献   

15.
This paper studies the phylogeny of the rove beetle subtribe Philonthina, to test its hypothetical monophyly and to unravel the evolutionary relationships of the subtribe and its included genus‐level taxa, with emphasis on the genus Pseudohesperus and its close‐allied relatives. The phylogenetic analyses are based on 105 adult morphological characters and 66 terminal taxa, i.e., all six members of Pseudohesperus, 51 species to represent 29 other genera of the subtribe Philonthina, seven species to represent the other six subtribes of Staphylinini, one species of the tribes Arrowinini, and one of the Platyprosopini. According to the phylogenetic results obtained, the genus Erichsonius should move out from the hitherto‐defined subtribe Philonthina and thus the monophyly of this taxon is challenged. The phylogenetic tree suggests that the genera Hesperus and Belonuchus might not be monophyletic, but the monophyly of Pseudohesperus and the sister relationship between it and Bisnius are well supported. The species‐level phylogenetic relationships of the genus Pseudohesperus reveal a clear pattern of species diversification that can be correlated well with the species' zoogeographical patterns. The paper also revises the taxonomy of Pseudohesperus and describes five new species from China: Pseudohesperus luteus Li & Zhou sp. nov. , Pseudohesperus pedatiformis Li & Zhou sp. nov. , Pseudohesperus tripartitus Li & Zhou sp. nov. , Pseudohesperus sparsipunctatus Li & Zhou sp. nov. , and Bisnius lubricus Li & Zhou sp. nov. An identification key to the species of Pseudohesperus is provided and their geographical distributions are mapped. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 679–722.  相似文献   

16.
Studies on Chenopodium chromosomes are scarce and restricted mainly to chromosome number estimation. To extend our knowledge on karyotype structure of the genus, the organization of 5S and 35S rRNA genes in Chenopodium chromosomes was studied. The rDNA sites were predominantly located at chromosomal termini, except in a few species where 5S rDNA sites were interstitial. The majority of the diploid species possessed one pair each of 35S and 5S rDNA sites located on separate chromosomes. Slightly higher diversity in rDNA site number was observed in polyploid accessions. One or two pairs of 35S rDNA sites were observed in tetraploids and hexaploids. Tetraploid species had two, four or six sites and hexaploid species had six or eight sites of 5S rDNA, respectively. These data indicate that, in the evolution of some polyploid species, there has been a tendency to reduce the number of rDNA sites. Additionally, polymorphism in rDNA site number was observed. Possible mechanisms of rDNA locus evolution are discussed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

17.
The Cyprinidae family is a highly diversified but demonstrably monophyletic lineage of cypriniform fishes. Among them, the genus Osteochilus contains 35 recognized valid species distributed from India, throughout Myanmar, Laos, Thailand, Malaysia, Indonesian archipelago to southern China. In this study, karyotypes and other chromosomal characteristics of five Osteochilus species occurring in Thailand, namely O. lini, O. melanopleura, O. microcephalus, O. vittatus and O. waandersii were examined using conventional and molecular cytogenetic protocols. Our results showed they possessed diploid chromosome number (2n) invariably 2n = 50, but the ratio of uni- and bi-armed chromosomes was highly variable among their karyotypes, indicating extensive chromosomal rearrangements. Only one chromosome pair bearing 5S rDNA sites occurred in most species, except O. melanopleura, where two sites were detected. In contrast, only one chromosomal pair bearing 18S rDNA sites were observed among their karyotypes, but in different positions. These cytogenetic patterns indicated that the cytogenomic divergence patterns of these Osteochilus species were largely corresponding to the inferred phylogenetic tree. Similarly, different patterns of the distributions of rDNAs and microsatellites across genomes of examined species as well as their different karyotype structures indicated significant evolutionary differentiation of Osteochilus genomes.  相似文献   

18.
The genus Peridinium Ehrenb. comprises a group of highly diversified dinoflagellates. Their morphological taxonomy has been established over the last century. Here, we examined relationships within the genus Peridinium, including Peridinium bipes F. Stein sensu lato, based on a molecular phylogeny derived from nuclear rDNA sequences. Extensive rDNA analyses of nine selected Peridinium species showed that intraspecies genetic variation was considerably low, but interspecies genetic divergence was high (>1.5% dissimilarity in the nearly complete 18S sequence; >4.4% in the 28S rDNA D1/D2). The 18S and 28S rDNA Bayesian tree topologies showed that Peridinium species grouped according to their taxonomic positions and certain morphological characters (e.g., epithecal plate formula). Of these groups, the quinquecorne group (plate formula of 3′, 2a, 7″) diverged first, followed by the umbonatum group (4′, 2a, 7″) and polonicum group (4′, 1a, 7″). Peridinium species with a plate formula of 4′, 3a, 7″ diverged last. Thus, 18S and 28S rDNA D1/D2 sequences are informative about relationships among Peridinium species. Statistical analyses revealed that the 28S rDNA D1/D2 region had a significantly higher genetic divergence than the 18S rDNA region, suggesting that the former as DNA markers may be more suitable for sequence‐based delimitation of Peridinium. The rDNA sequences had sufficient discriminative power to separate P. bipes f. occultaum (Er. Lindem.) M. Lefèvre and P. bipes f. globosum Er. Lindem. into two distinct species, even though these taxa are morphologically only marginally discriminated by spines on antapical plates and the shape of red bodies during the generation of cysts. Our results suggest that 28S rDNA can be used for all Peridinium species to make species‐level taxonomic distinctions, allowing improved taxonomic classification of Peridinium.  相似文献   

19.
The present study employed basic and molecular cytogenetic methods to characterize three populations of Parauchenipterus galeatus from the basins of the Paraná and São Francisco Rivers, and a region of connection between the two basins. Although the diploid number was equal to 58 chromosomes, variations in karyotype formula were detected among the populations. B chromosomes were detected only in the population from the São Francisco River. Heterochromatin was located in the terminal position in almost all the chromosomes and in the pericentromeric position in some acrocentric chromosomes in the three populations. A single nucleolus organizer region was detected by silver nitrate and 18S rDNA‐fluorescent in situ hybridization in the short arm of one subtelocentric pair in the three populations, varying only in the chromosome pair bearing this site. The 5S rDNA sites were located in two submetacentric chromosome pairs in the three populations, varying only in the chromosome pairs bearing these sequences. Classic and molecular chromosome markers, along with the context of the natural history of the formation of hydrographic basins, ecological aspects, and the geographic isolation of populations between hydrographic basins and within the same basin, were important contributions to the discussion on possible biogeographic relations among the populations of Parauchenipterus galeatus. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 648–656.  相似文献   

20.
ABSTRACT. Pneumocandins inhibit β‐1,3‐glucan synthesis preventing the development of Pneumocystis cysts that are absent from the lungs of treated rats. To determine whether treated trophozoites are capable of DNA replication, cytochemical analyses were performed on 4′,6‐diamidino‐2‐phenylindole (DAPI)‐ and DB181‐stained Pneumocystis carinii isolated from pneumocandin L‐693‐989‐treated rats. Fluorescence intensities of trophozoite nuclei from drug‐treated rats were greater than those of untreated controls, suggesting that DNA replication was not inhibited but that cytokinesis and perhaps karyokinesis were blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号