首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. While streams in Europe and North America are now recovering chemically from chronic acidification, severe episodic acidification continues to threaten sensitive biota. To appraise further the biological importance of episodic acidification, we surveyed the distribution of the mayfly Baetis alpinus in streams in the Southern Alps (Canton Ticino, Switzerland) in relation to runoff acidity during spring floods. Moreover, to improve mechanistic understanding, in situ toxicity assays were carried out on nymphal B. alpinus during low flows and spring floods, both in streams prone to acid episodes and in well‐buffered controls. 2. Streams surveyed for invertebrates represented three groups which contrasted in susceptibility to episodic acidity. Group one included streams that were acid (alkalinity <0) in spring; group two streams were susceptible to acid episodes because of low base‐flow alkalinity (<200 μeq L?1); and group three streams were well‐buffered and unlikely ever to be acid. The abundance of B. alpinus was similar among groups during stable flows in winter and summer, but was significantly lower in groups one and two following spring snowmelt. 3. During the bioassays, control streams remained circumneutral to alkaline (pH >6.4). By contrast, episodic streams were circumneutral at low flows, but became acid (pH 4.5–5.6 and total dissolved aluminium to 276 μg L?1) during intense spring snowmelt. After 15‐day exposures, nymphal B. alpinus survival in the circumneutral control streams exceeded 92% irrespective of flow. In the episodic streams, survival matched the controls during low flows, but declined significantly to 10–20% during acid episodes in spring. Shorter exposure (2–4 days) to pH 5.5–5.7 did not cause significant mortality either during the exposure or over the following 7 days, indicating that B. alpinus might recover from short acid episodes. 4. Our data suggest that the spring distribution of B. alpinus in acid sensitive parts of the Alps directly reflects the toxicity of acid runoff during snowmelt. Our study illustrates that even mild episodic acidification can have significant consequences in Alpine streams for one of the most important invertebrate indicators of acidity.  相似文献   

2.
1. Although mean pH is increasing in acidified streams throughout Europe, benthic invertebrates are recovering only slowly. One developing hypothesis is that acid episodes continue to restrict recolonisation and recovery. Here, we used intra‐annual sampling in replicate circumneutral, acid and episodic streams at the Llyn Brianne experimental catchments to assess possible mayfly exposure to episodic effects quantified from a risk index based on long‐term discharge. Episodic effects were then tested using short‐term transplantations of animals in enclosures. 2. No mayflies occurred in acid streams while Baetis rhodani occurred in episodic streams but declined to zero density following low pH in autumn. Ephemerella ignita, Baetis vernus, B. muticus, Rhithrogena semicolorata, Ecdyonurus spp. and Heptagenia lateralis occurred only in the circumneutral streams. The first two species were present as nymphs only during July and August so that episodic exposure risk was minimal, but the remaining species occurred as nymphs in all months. 3. Baetis rhodani transplanted during base‐flow (September 2003) and high‐flow (April 2004) were exposed to either; (i) continual (chronic) exposure in the acid streams over 16 days or (ii) repeated short‐term (episodic) exposure to acid conditions for 2 × 4 day periods interspersed with 4‐day recovery periods in the circumneutral streams. Baetis survival in the circumneutral streams (always pH > 5.7) remained high during both low‐ and high‐flow. By comparison, mortality increased (P < 0.01) during chronic and episodic exposure, but only during high‐flow (mean pH 3.8–3.9, cf. 5.5–5.8 at low flow) when mortality varied significantly in the order chronic (>80%) > episodic (>40%) >circumneutral (<10%). 4. We conclude that, despite Europe‐wide trends towards chemical recovery from acidification, even short exposures to high‐flow events at Llyn Brianne are still sufficiently acid to reduce the survival of B. rhodani. Most mayfly species absent from acid and episodic streams have life cycles that would increase acid exposure risks during autumn and winter, and this may be sufficient to explain their current distribution.  相似文献   

3.
We tested two predictions required to support the hypothesis that anthropogenic acidic episodes might explain the poor biological response of upland British streams otherwise recovering from acidification: (i) that invertebrate assemblages should differ between episodic and well-buffered streams and (ii) these effects should differentiate between sites with episodes caused by anthropogenic acidification as opposed to base-cation dilution or sea-salt deposition. Chronic and episodically acidic streams were widespread, and episodes reflected acid titration more than dilution. Nonmarine sulphate (16–18% vs. 5–9%), and nitrate (4–6% vs. 1–2%) contributed more to anion loading during episodes in Wales than Scotland, and Welsh streams also had a larger proportion of total stream sulphate from nonmarine sources (64–66% vs. 35–46%). Sea-salts were rarely a major cause of episodic ANC or pH reduction during the events sampled. By contrast, streams with episodes driven by strong anthropogenic acids had lower pH (5.0±0.6) and more dissolved aluminium (288±271 μg L−1) during events than where episodes were caused by dilution (pH 5.4±0.6; 116±110 μg Al L−1) or where streams remained circumneutral (pH 6.7±1.0; 50±45 μg Al L−1). Both biological predictions were supported: invertebrate assemblages differed among sites with different episode chemistry while several acid-sensitive species were absent only where episodes reflected anthropogenic acidification. We conclude that strong acid anions – dominantly nonmarine sulphate – still cause significant episodic acidification in acid-sensitive areas of Britain and may be a sufficient explanation for slow biological recovery in many locations.  相似文献   

4.
Long-term effects of catchment liming on invertebrates in upland streams   总被引:5,自引:0,他引:5  
1. Catchment liming to mitigate acidification causes major chemical change in freshwaters but longer‐term effects are poorly understood. Using a replicated basin‐scale experiment with a multiple BACI design (= before‐after‐control‐impact), we assessed chemical and biological effects for 10 years after the catchments of three acidified Welsh streams at Llyn Brianne were limed in 1987/88. 2. Stream chemistry was measured weekly to monthly, and macroinvertebrates monitored annually, between 1985 and 1998. Biological change through time was assessed from the abundance and taxon richness of invertebrates. We paid particular attention to 18 species known to be acid‐sensitive. The effects of liming were assessed by comparing chemical and biological trends among the three replicate limed streams, three acid reference streams and two naturally circumneutral streams. 3. Following single lime applications, acid‐base chemistry in treated streams changed significantly. High mean pH (> 6), increased calcium (> 2.5 mg L?1) and low aluminium (< 0.1 mg L?1) persisted throughout the 10 years following liming. 4. The effects of liming on invertebrates were modest. Acid sensitive taxa increased significantly in abundance in limed streams, but only during 2 years following treatment. Significant effects on richness were more sustained, but on average added only 2–3 acid‐sensitive species to the treated streams, roughly one‐third of their average richness in adjacent circumneutral streams. Only the mayfly Baetis rhodani and the stonefly Brachyptera risi occurred significantly more often in limed streams after treatment than before it. 5. Despite these modest long‐term effects on invertebrates, nearly 80% of the total pool of acid‐sensitive species has occurred at least once in the limed streams in the 10 years since treatment. This pattern of occurrence suggests that the colonization of limed streams by acid‐sensitive taxa reflects limited persistence rather than restricted dispersal. We present evidence to show that episodes of low pH continued to affect acid‐sensitive taxa even after liming. We highlight the importance of extending the time‐periods over which the effects of large‐scale ecological experiments are assessed.  相似文献   

5.
1. The exposure of mesh litter bags has been widely used to investigate the role of benthic macroinvertebrates in leaf processing in freshwaters. In this sense, several studies have related litter bag breakdown rates to the presence of colonizing invertebrates. A possible confounding factor in such experiments is that the litter bags trap suspended particulate organic matter that can itself attract invertebrate colonists, irrespective of the intended experimental treatment.
2. We attempted to quantify the accumulation of particulate organic matter (POM) within litter bags and to investigate its possible impact on macroinvertebrate density and richness. In seven headwater forested streams we exposed mesh bags filled either with beech leaves ( Fagus sylvatica ) or with plastic strips of an equal surface area.
3. Principal component analysis (PCA) showed that bag type and stream were the main explanatory variables for invertebrate colonization and POM accumulation within the bags. In contrast, there was little variation among sampling dates (6.4% of the total inertia).
4. The accumulated POM within the bags was substantial (up to 8.83 g ash-free dry mass (AFDM)) but highly variable among sites (mean from 0.32 to 4.58 g AFDM). At each of the seven sites, both richness and abundance of invertebrates were positively correlated with the mass of accumulated POM in bags. Macroinvertebrate colonization (notably taxon richness) was directly linked with the quantity of POM accumulated.
5. Our findings provide evidence of a potential pitfall in linking invertebrates to litter processing in mesh bags, particularly when large amounts of POM, entrained in stream flow, accumulate within the bags. An evaluation of the POM mass trapped in litter bags could account for the erratic patterns sometimes observed in their colonization by invertebrates.  相似文献   

6.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

7.
1. Low organic matter availability is thought to be a primary factor influencing evolutionary and ecological processes in cave ecosystems. We examined links among organic matter abundance, macroinvertebrate community structure and breakdown rates of red maple (Acer rubrum) and corn litter (Zea mays) in coarse‐ (10 × 8 mm) and fine‐mesh (500‐μm) litter bags over two seasonal periods in four cave streams in the south‐eastern U.S.A. 2. Organic matter abundance differed among cave streams, averaging from near zero to 850 g ash‐free dry mass m?2. Each cave system harboured a different macroinvertebrate community. However, trophic structure was similar among caves, with low shredder biomass (2–17% of total biomass). 3. Corn litter breakdown rates (mean k = 0.005 day?1) were faster than red maple (mean k = 0.003 day?1). Breakdown rates in coarse‐mesh bags (k = 0.001–0.012 day?1) were up to three times faster than in fine‐mesh bags (k = 0.001–0.004 day?1). Neither invertebrate biomass in litter bags nor breakdown rates were correlated with the ambient abundance of organic matter. Litter breakdown rates showed no significant temporal variation. Epigean (surface‐adapted) invertebrates dominated biomass in litter bags, suggesting that their effects on cave ecosystem processes may be greater than hypogean (cave‐adapted) taxa, the traditional focus of cave studies. 4. The functional diversity of our cave communities and litter breakdown rates are comparable to those found in previous litter breakdown studies in cave streams, suggesting that the factors that control organic matter processing (e.g. trophic structure of communities) may be broadly similar across geographically diverse areas.  相似文献   

8.
1. Acid‐base status has major effects on diatoms, but there is little information on their short‐term response to changing acidity. This is despite the use of diatoms as bioindicators in streams where acid episodes are important during rainstorms (hours to days) or snowmelt (days to weeks). In the Llyn Brianne experimental catchments (Wales, UK), we attempted to mimic the effects of short‐term acidification by (i) reciprocally transplanting diatoms between two streams of contrasting acidity and (ii) using acid‐diffusing substrates. 2. Diatom diversity decreased rapidly on substrata transplanted from the circumneutral into the acidic stream, and increased in the reciprocal transplantation. Changes in dominant taxa occurred within three days in the acidic stream because of the rapid growth of Eunotia exigua, and by nine days in the circumneutral stream because of the proliferation of Achnanthidium minutissimum. Transplants were near indistinguishable from ambient assemblages by day 12. 3. There were no effects of enclosures on assemblage composition, but diatoms responded more rapidly to altered chemistry in enclosures with coarse mesh (26 × 50 mm) than finer mesh (320 μm). 4. Chemical diffusing substrates comprised terracotta tiles attached to dosing reservoirs that created locally acid (using H2SO4) or metal‐rich conditions (using MnSO4) in the circumneutral stream over 26 days. Diatom responses were compared with reference substrates dosed with deionised or circumneutral stream water, and we also assessed whether effects were moderated by macroinvertebrate grazers. 5. Surface pH was lower by 1–2 pH units on acid‐dosed substrates than on reference tiles or in surrounding streamwater. Grazed assemblages on acid‐dosed substrates differed significantly from ungrazed reference assemblages, acquiring significantly greater relative abundance of Eunotia spp. However, the magnitude of response was less than in the between‐stream transplantations either because (i) metal exposure and base cation concentrations differed between the transplants and dosing substrates or (ii) diatom response to reduced pH on the diffusing substrates was restricted by the scarcity of acidobiontic diatoms in the circumneutral stream. Similar filter, founder or dominance effects might also affect diatom responses to real acid episodes. 6. These data show that diatom assemblages can respond rapidly and directly to changes in acid‐base status, but short‐term acidification might affect diatoms more rapidly than subsequent recovery. Because the experimental methods used were imperfect representations of episodic effects, diatom response to real acid events requires further field evaluation.  相似文献   

9.
1. We investigated the effect of moderate eutrophication on leaf litter decomposition and associated invertebrates in five reference and five eutrophied streams in central Portugal. Fungal parameters and litter N and P dynamics were followed in one pair of streams. Benthic invertebrate parameters that are considered useful in bioassessment were estimated in all streams. Finally, we evaluated the utility of decomposition as a tool to assess stream ecosystem functional integrity. 2. Decomposition of alder and oak leaves in coarse mesh bags was on average 2.3–2.7× faster in eutrophied than in reference streams. This was attributed to stimulation of fungal activity (fungal biomass accrual and sporulation of aquatic hyphomycetes) by dissolved nutrients. These effects were more pronounced for oak litter (lower quality substrate) than alder. N content of leaf litter did not differ between stream types, while P accrual was higher in the eutrophied than in the reference stream. Total invertebrate abundances and richness associated with oak litter, but not with alder, were higher in eutrophied streams. 3. We found only positive correlations between stream nutrients (DIN and SRP) and leaf litter decomposition rates in both fine and coarse mesh bags, associated sporulation rates of aquatic hyphomycetes and, in some cases, total invertebrate abundances and richness. 4. Some metrics based on benthic invertebrate community data (e.g. % shredders, % shredder taxa) were significantly lower in eutrophied than in reference streams, whereas the IBMWP index that is specifically designed for the Iberian peninsula classified all 10 streams in the highest possible class as having ‘very good’ ecological conditions. 5. Leaf litter decomposition was sufficiently sensitive to respond to low levels of eutrophication and could be a useful functional measure to complement assessment programmes based on structural parameters.  相似文献   

10.
1. Despite long‐standing ecotoxicological evidence that episodes of acidification in streams are important biologically, there is still uncertainty about their effects on invertebrate communities. We surveyed 20 streams in an acid sensitive Alpine area (Canton Ticino, Switzerland), where episodes are driven by snowmelt in spring and by rainstorms at other times of the year. Samples of water and macroinvertebrates were collected in pre‐event conditions (winter and summer) and during periods of high flow (spring and autumn). 2. Using pH, [Ca2+] and [Aln+], streams were clustered into six acid–base groups that were either well buffered (groups 4–6), soft‐water with stable pH (group 3), or poorly buffered with low pH at high flow (groups 1 and 2). 3. Severe episodes occurred during snowmelt, when the group 1 streams became acidic with pH down to 5.0 and [Aln+] up to 140 μg L?1. pH declined to 6.2 in streams of group 2, but remained > 6.6 in groups 3–6. 4. Detrended canonical correspondence analysis showed that the streams sensitive to episodes (groups 1 and 2) had different invertebrate assemblages from well‐buffered sites (groups 4 and 5) or soft‐water stable streams (group 3), with faunal differences largest following spring snowmelt. Empididae, Isoperla rivulorum, Rhithrogena spp. and Baetis spp. were scarce in streams sensitive to episodes (groups 1 and 2). By contrast, Amphinemura sulcicollis was scarcer in hard‐water streams (groups 4–6). Taxonomic richness was lower in the episodic streams of group 1 than in other streams. 5. Together, these results indicate clear biological differences between acid‐sensitive streams with similar low‐flow chemistry but contrasting episode chemistry. Severe episodes of acidification appear to affect macroinvertebrate assemblages in streams in the southern Swiss Alps.  相似文献   

11.
1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second–third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf‐shredding insects was estimated using the increment summation and size‐frequency methods. Leaf litter breakdown rates were estimated by retrieving litter‐bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant‐induced alterations in community structure. We argue for the necessity of simultaneously measuring community structure and ecosystem function in anthropogenically stressed ecosystems.  相似文献   

12.
Acidification has strongly affected natural ecosystems due to the deposition of acidifying pollutants in geographical areas with low buffering capacity. Here we show both that taxonomic richness of benthic invertebrates (as a measure of stream health) and breakdown rate of leaf litter (a major process in stream ecosystems) in three naturally acid streams were not significantly different from richness and breakdown rates of three circumneutral control streams in the same area in northern Sweden. In contrast, a comparative data-set representing a gradient from circumneutral to acidified streams in France showed decreasing richness and litter breakdown rates (by 60% and 70% between pH 6.5 and 4.5, respectively) typical of acidified streams. The strong negative effects found in many freshwater systems may be a consequence of low capacity to adjust to rapidly changed conditions. In contrast, organisms in naturally acidic systems, such as streams of the boreal region in catchments with accumulating organic material and a geology poor in buffering substances, seem better adapted as a consequence of protracted exposure to low pH over evolutionary time. These results have implications for the management of streams and rivers in northern Sweden, where considerable efforts are spent on remediation without consideration of the fact that the natural state of many of these systems is acidic.  相似文献   

13.
1. The effect of nutrient enrichment on structural (invertebrate indices) and functional (leaf‐litter breakdown rates) characteristics of stream integrity was studied in nine boreal streams. 2. The results showed predicted changes in biotic indices and leaf‐litter breakdown along a complex (principal component) nutrient gradient. Biotic indices were better correlated with nutrient effects than leaf‐litter breakdown. 3. Fungal biomass and invertebrate densities in the litter bags were positively correlated with leaf‐litter breakdown, and both were also positively related to the nutrient gradient. 4. Invertebrate community composition influenced breakdown rate. High breakdown rates at one site were associated with the high abundance of the detritivore Asellus aquaticus. 5. This study lends support to the importance of invertebrate and fungi as mediators of leaf‐litter decomposition. However, our study also shows that study design (length of incubation) can confound the interpretation of nutrient‐induced effects on decomposition.  相似文献   

14.
Shredding stream invertebrates should have a positive influence on the breakdown rates of leaf litter via direct consumption and particle fragmentation. To determine the effects of shredder density on litter breakdown, breakdown of the emergent stream macrophyte, Nasturtium officinale , was investigated using three litter bag mesh sizes [fine (0.2 mm), medium (1 mm) and coarse (3 mm) mesh] and four stocking densities of the shredder, Gammarus pseudolimnaeus , (0, 4, 8 and 16 per bag). Watercress decayed very rapidly, with breakdown rates ( k values) ranging from 0.075 d-1 for fine mesh with no shredders to 0.24 d-1 for coarse mesh. Stocked Gammarus increased breakdown rates significantly in fine mesh bags (p < 0.001), but only marginally in medium mesh bags (p < 0.1). Breakdown rates also increased significantly with mesh size. A regression model showed a significant relation of breakdown rate to Gammarus density and mesh size. These results clearly show that shredders can significantly influence breakdown rates and can account for up to 30% of breakdown, but that mesh size effects such as particle size reduction and loss are also very important.  相似文献   

15.
Land‐use changes such as conversion of natural forest to rural and urban areas have been considered as main drivers of ecosystem functions decline, and a large variety of indicators has been used to investigate these effects. Here, we used a replicated litter‐bag experiment to investigate the effects of land‐use changes on the leaf‐litter breakdown process and leaf‐associated invertebrates along the forest–pasture–urban gradient located in a subtropical island (Florianópolis, SC, Brazil). We identified the invertebrates and measured the litter breakdown rates using the litter bags approach. Litter bags containing 3 g of dry leaf of Alchornea triplinervia were deployed on forest rural and urban streams. Principal component analysis, based on physico‐chemical variables which, confirmed a gradient of degradation from forest to urban streams with intermediate values in rural areas. In accordance, shredder richness and abundance were lower in rural and urban than in forest streams. The land‐use changes led also to the dominance of tolerant generalist taxa (Chironomidae and Oligochaeta) reducing the taxonomic and functional diversity in these sites. Leaf‐litter breakdown rates decreased from forest to rural and finally to urban areas and were associated with changes in pH, water velocity, dissolved oxygen and abundance of leaf‐shredding invertebrates, although global decomposition rates did not differ between rural and urban streams. Overall, this study showed that land‐use changes, namely to rural and urban areas, have a strong impact on tropical streams ecosystems, in both processes and communities composition and structure. Despite of being apparently a smaller transformation of landscape, rural land use is comparable to urbanisation in terms of impact in stream functioning. It is thus critical to carefully plan urban development and maintain forest areas in the island of Florianópolis in order to preserve its natural biodiversity and aquatic ecosystems functioning.  相似文献   

16.
1. Although stream–catchment interactions have been analysed in some detail in temperate environments, little is known about the effects of land‐use changes in the tropics. Here, we analyse differences in benthic communities (macroinvertebrates and fungi) under two contrasting land uses (mature secondary forest and pasture) in montane streams in north‐western Ecuador and their influence on the rates of litter processing. 2. Between 2005 and 2006, we used a combination of coarse and fine mesh bags to study the relative contribution of macroinvertebrates and fungi to processing of two types of litter, Alnus acuminata and Inga spectabilis, in three‐first‐order streams running through mature secondary montane forests and adjacent downstream reaches running through pastures. At the same time, we characterised the assemblages of shreddering macroinvertebrates and fungi communities and the litter processing rates in stream reaches under both vegetation types. 3. Litter processing rates attributable to invertebrate feeding (coarse mesh bags) were significantly slower in streams running through pastures. Nevertheless, shredder diversity and richness were similar between pasture and forest sections, while shredder abundance was significantly higher in forest streams (mainly Phylloicus sp. :Trichoptera). Fungal reproductive activity and litter processing rates were low (fine mesh bags) and did not differ significantly between pasture and forest stream reaches. 4. Phylloicus sp. abundance was the best predictor of the percentage of litter remaining in coarse mesh bags across pasture and forest sites. Neither shredder diversity nor their species richness was a significant predictor of mass loss, as most of the decomposition was performed by a single keystone species. Although litter decomposition by microbial decomposers was low, fungal biomass (but not diversity) was the best variable explaining the percentage of litter remaining in fine mesh bags. 5. Our data suggest that, in these Neotropical montane streams, land use can have a significant impact on the rates of critical ecosystem processes, such as litter decomposition. In this study, this effect was not mediated by a major shift in the structure of the benthos, but by a decrease in the abundance and relative representation of a single species whose life history makes it critical to litter processing. 6. This study highlights the significant role that macroinvertebrate fauna can have in the processing of litter in Neotropical streams and the predominant role that single species can have in terms of controlling stream ecosystem‐level processes. Understanding the extent to which these patterns affect the long‐term and large‐scale functioning of stream ecosystems still needs further research and will become increasingly important in terms of managing lotic ecosystems in the context of rapid land‐use change.  相似文献   

17.
Mike Dobson 《Hydrobiologia》1991,222(1):19-28
Aggregation of leat litter formed against small mesh obstacles — placebo traps — were studied in four streams differing in natural retentiveness and pH. In three of the streams, natural benthic accumulations of leaf litter were available for comparison, and in these the fauna in the plastic traps and the natural accumulations was similar. In two of the streams comparisons were made, in terms of percent composition, between the fauna of the stony benthos and that colonizing plastic traps and leaf-filled mesh bags. In an acid, naturally retentive stream, the fauna of the three treatments was similar, although shredders were relatively more abundant in plastic traps and mesh bags. In a circumneutral, non-retentive stream diversity of taxa was reduced in plastic traps compared with the stony benthos, and in mesh bags compared with plastic traps. Numbers of animals per g of leaf litter were similar in plastic traps and mesh bags in the retentive stream. In the non-retentive stream, however, there were fewer animals in mesh bags than in the plastic traps. For many purposes, the plastic traps produce leaf packs which closely mimic natural packs, but the results from mesh bags depend on the background retentiveness of the streams in question.  相似文献   

18.
The damming of rivers and streams alters downstream habitat characteristics and biotic assemblages, and might thus alter stream functioning, although there is not much direct evidence of this impact. In this study we compared breakdown of alder leaves upstream and downstream from 4 small (<1 hm3) dams in 4 Mediterranean mountain streams with no appreciable impact on water temperature and nutrient concentrations. Despite no effect on water characteristics, dams decreased leaf litter breakdown rates. Abundance and biomass of invertebrates and shredders and hyphomycete sporulation rates did not differ between upstream and downstream bags. However, the structure of invertebrate and hyphomycete assemblages did. Especially evident was a drop in limnephilids, which might explain the slower breakdown of leaf litter below dams. These results may help to explain some of the variability found in the literature on the effects of dams on decomposition rates. If dams increase water temperature and nutrient concentrations they may promote faster decomposition, but if dams do not change water characteristics, their impact on detritivore communities may cause slower decomposition rates.  相似文献   

19.
1. Human land‐use has altered catchments on a large scale in most parts of the world, with one of the most profound changes relevant for streams and rivers being the widespread clearance of woody riparian vegetation to make way for livestock grazing pasture. Increasingly, environmental legislation, such as the EU Water Framework Directive (EU WFD), calls for bioassessment tools that can detect such anthropogenic impacts on ecosystem functioning. 2. We conducted a large‐scale field experiment in 30 European streams to quantify leaf‐litter breakdown, a key ecosystem process, in streams whose riparian zones and catchments had been cleared for pasture compared with those in native deciduous woodland. The study encompassed a west–east gradient, from Ireland to Switzerland to Romania, with each of the three countries representing a distinct region. We used coarse‐mesh and fine‐mesh litter bags (10 and 0.5 mm, respectively) to assess total, microbial and, by difference, macroinvertebrate‐mediated breakdown. 3. Overall, total breakdown rates did not differ between land‐use categories, but in some regions macroinvertebrate‐mediated breakdown was higher in deciduous woodland streams, whereas microbial breakdown was higher in pasture streams. This result suggests that overall ecosystem functioning is maintained by compensatory increases in microbial activity in pasture streams. 4. We suggest that simple coefficients of breakdown rates on their own often might not be powerful enough as a bioassessment tool for detecting differences related to land‐use such as riparian vegetation removal. However, shifts in the relative contributions to breakdown by microbial decomposers versus invertebrate detritivores, as revealed by the ratios of their associated breakdown rate coefficients, showed clear responses to land‐use.  相似文献   

20.
Most ecosystems are subjected to multiple stressors derived from natural and anthropogenic sources and community responses to human disturbance in naturally stressful habitats may differ from those in more benign habitats. We examined the influence of a natural (geology-driven acidity) vs. human-induced stress (land drainage) and their interaction on the composition and concordance of stream diatom, bryophyte and invertebrate communities. To account for differing drainage impacts in circumneutral (sedimentation) and naturally acid (reduced pH and increased metal concentrations) streams we investigated concordance in three groups of streams: reference (circumneutral and naturally acidic reference), circumneutral (reference and drained) and naturally acidic (reference and drained) streams. We expected diatoms to respond more strongly to anthropogenic acidification and more weakly to sedimentation compared to bryophytes and invertebrates. We expected overall strong concordance among the three taxonomic groups, but especially so in reference streams. All three organism groups had distinct species composition in naturally acidic vs. circumneutral streams. Concordance between communities was overall strong, especially so in the reference streams. All groups responded to drainage disturbance in both types of streams. Invertebrates were slightly less responsive to increased acidification in the naturally acidic streams but were more affected by sedimentation in the circumneutral streams than were the other two groups. The natural stressor affected communities more than the anthropogenic stressors. Naturally stressed communities were affected by an anthropogenic stressor as much as those in more benign habitats, although the additional stressor was similar to the initial stress (further reduction of stream pH). Naturally acid streams may need special concern in bioassessment because models based on circumneutral reference sites will likely produce biased predictions for these streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号