首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure_threader is a program to parallelize multiple runs of genetic clustering software that does not make use of multithreading technology (structure , fastStructure and MavericK) on multicore computers. Our approach was benchmarked across multiple systems and displayed great speed improvements relative to the single‐threaded implementation, scaling very close to linearly with the number of physical cores used. Structure_threader was compared to previous software written for the same task—ParallelStructure and StrAuto and was proven to be the faster (up to 25% faster) wrapper under all tested scenarios. Furthermore, Structure_threader can perform several automatic and convenient operations, assisting the user in assessing the most biologically likely value of ‘K’ via implementations such as the “Evanno,” or “Thermodynamic Integration” tests and automatically draw the “meanQ” plots (static or interactive) for each value of K (or even combined plots). Structure_threader is written in python 3 and licensed under the GPLv3. It can be downloaded free of charge at https://github.com/StuntsPT/Structure_threader .  相似文献   

2.
Many eukaryotic genomes contain a large fraction of gene duplicates (or paralogs) as a result of ancient or recent whole‐genome duplications (Ohno 1970 ; Jaillon et al. 2004 ; Kellis et al. 2004 ). Identifying paralogs with NGS data is a pervasive problem in both ancient polyploids and neopolyploids. Likewise, paralogs are often treated as a nuisance that has to be detected and removed (Everett et al. 2012 ). In this issue of Molecular Ecology Resources, Waples et al. ( 2015 ) show that exclusion might not be necessary and how we may miss out on important genomic information in doing so. They present a novel statistical approach to detect paralogs based on the segregation of RAD loci in haploid offspring and test their method by constructing linkage maps with and without these duplicated loci in chum salmon, Oncorhynchus keta (Fig.  1 ). Their linkage map including the resolved paralogs shows that these are mostly located in the distal regions of several linkage groups. Particularly intriguing is their finding that these homoeologous regions appear impoverished in transposable elements (TE). Given the role that TE play in genome remodelling, it is noteworthy that these elements are of low abundance in regions showing residual tetrasomic inheritance. This raises the question whether re‐diploidization is constrained in these regions and whether they might have a role to play in salmonid speciation. This study provides an original approach to identifying duplicated loci in species with a pedigree, as well as providing a dense linkage map for chum salmon, and interesting insights into the retention of gene duplicates in an ancient polyploid.  相似文献   

3.
4.
5.
Antarctic ecosystems are dominated by micro‐organisms, and viruses play particularly important roles in the food webs. Since the first report in 2009 (López‐Bueno et al. 2009 ), ‘omic’‐based studies have greatly enlightened our understanding of Antarctic aquatic microbial diversity and ecosystem function (Wilkins et al. 2013 ; Cavicchioli 2015 ). This has included the discovery of many new eukaryotic viruses (López‐Bueno et al. 2009 ), virophage predators of algal viruses (Yau et al. 2011 ), bacteria with resistance to phage (Lauro et al. 2011 ) and mechanisms of haloarchaeal evasion, defence and adaptation to viruses (Tschitschko et al. 2015 ). In this issue of Molecular Ecology, López‐Bueno et al. ( 2015 ) report the first discovery of RNA viruses from an Antarctic aquatic environment. High sequence coverage enabled genome variation to be assessed for four positive‐sense single‐stranded RNA viruses from the order Picornavirales. By examining the populations present in the water column and in the lake's catchment area, populations of ‘quasispecies’ were able to be linked to local environmental factors. In view of the importance of viruses in Antarctic ecosystems but lack of data describing them, this study represents a significant advance in the field.  相似文献   

6.
Unravelling the mechanisms underlying variation in life history traits is of fundamental importance for our understanding of adaptation by natural selection. While progress has been made in mapping fitness-related phenotypes to genotypes, mainly in a handful of model organisms, functional genomic studies of life history adaptations are still in their infancy. In particular, despite a few notable exceptions, the genomic basis of life history variation in natural populations remains poorly understood. This is especially true for the genetic underpinnings of life history phenotypes subject to diversifying selection driven by ecological dynamics in patchy environments--as opposed to adaptations involving strong directional selection owing to major environmental changes, such as latitudinal gradients, extreme climatic events or transitions from salt to freshwater. In this issue of Molecular Ecology,Wheat et al. (2011) now make a significant leap forward by applying the tools of functional genomics to dispersal-related life history variation in a butterfly metapopulation. Using a combination of microarrays, quantitative PCR and physiological measurements, the authors uncover several metabolic and endocrine factors that likely contribute to the observed life history phenotypes. By identifying molecular candidate mechanisms of fitness variation maintained by dispersal dynamics in a heterogeneous environment,they also begin to address fascinating interactions between the levels of physiology, ecology and evolution.  相似文献   

7.
When a high-quality genome assembly of a target species is unavailable, an option to avoid the costly de novo assembly process is a mapping-based assembly. However, mapping shotgun data to a distant relative may lead to biased or erroneous evolutionary inference. Here, we used short-read data from a mammal (beluga whale) and a bird species (rowi kiwi) to evaluate whether reference genome phylogenetic distance can impact downstream demographic (Pairwise Sequentially Markovian Coalescent) and genetic diversity (heterozygosity, runs of homozygosity) analyses. We mapped to assemblies of species of varying phylogenetic distance (from conspecific to genome-wide divergence of >7%), and de novo assemblies created using cross-species scaffolding. We show that while reference genome phylogenetic distance has an impact on demographic analyses, it is not pronounced until using a reference genome with >3% divergence from the target species. When mapping to cross-species scaffolded assemblies, we are unable to replicate the original beluga demographic results, but are able with the rowi kiwi, presumably reflecting the more fragmented nature of the beluga assemblies. We find that increased phylogenetic distance has a pronounced impact on genetic diversity estimates; heterozygosity estimates deviate incrementally with increasing phylogenetic distance. Moreover, runs of homozygosity are largely undetectable when mapping to any nonconspecific assembly. However, these biases can be reduced when mapping to a cross-species scaffolded assembly. Taken together, our results show that caution should be exercised when selecting reference genomes. Cross-species scaffolding may offer a way to avoid a costly, traditional de novo assembly, while still producing robust, evolutionary inference.  相似文献   

8.
Bacteria that engage in long‐standing associations with particular hosts are expected to evolve host‐specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep‐branching host‐specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate‐related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate‐related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.  相似文献   

9.
The genotyping of highly polymorphic multigene families across many individuals used to be a particularly challenging task because of methodological limitations associated with traditional approaches. Next‐generation sequencing (NGS) can overcome most of these limitations, and it is increasingly being applied in population genetic studies of multigene families. Here, we critically review NGS bioinformatic approaches that have been used to genotype the major histocompatibility complex (MHC) immune genes, and we discuss how the significant advances made in this field are applicable to population genetic studies of gene families. Increasingly, approaches are introduced that apply thresholds of sequencing depth and sequence similarity to separate alleles from methodological artefacts. We explain why these approaches are particularly sensitive to methodological biases by violating fundamental genotyping assumptions. An alternative strategy that utilizes ultra‐deep sequencing (hundreds to thousands of sequences per amplicon) to reconstruct genotypes and applies statistical methods on the sequencing depth to separate alleles from artefacts appears to be more robust. Importantly, the ‘degree of change’ (DOC) method avoids using arbitrary cut‐off thresholds by looking for statistical boundaries between the sequencing depth for alleles and artefacts, and hence, it is entirely repeatable across studies. Although the advances made in generating NGS data are still far ahead of our ability to perform reliable processing, analysis and interpretation, the community is developing statistically rigorous protocols that will allow us to address novel questions in evolution, ecology and genetics of multigene families. Future developments in third‐generation single molecule sequencing may potentially help overcome problems that still persist in de novo multigene amplicon genotyping when using current second‐generation sequencing approaches.  相似文献   

10.
11.
Nearly 25 years ago, Allan Wilson and colleagues isolated DNA sequences from museum specimens of kangaroo rats (Dipodomys panamintinus) and compared these sequences with those from freshly collected animals (Thomas et al. 1990 ). The museum specimens had been collected up to 78 years earlier, so the two samples provided a direct temporal comparison of patterns of genetic variation. This was not the first time DNA sequences had been isolated from preserved material, but it was the first time it had been carried out with a population sample. Population geneticists often try to make inferences about the influence of historical processes such as selection, drift, mutation and migration on patterns of genetic variation in the present. The work of Wilson and colleagues was important in part because it suggested a way in which population geneticists could actually study genetic change in natural populations through time, much the same way that experimentalists can do with artificial populations in the laboratory. Indeed, the work of Thomas et al. ( 1990 ) spawned dozens of studies in which museum specimens were used to compare historical and present‐day genetic diversity (reviewed in Wandeler et al. 2007 ). All of these studies, however, were limited by the same fundamental problem: old DNA is degraded into short fragments. As a consequence, these studies mostly involved PCR amplification of short templates, usually short stretches of mitochondrial DNA or microsatellites. In this issue, Bi et al. ( 2013 ) report a breakthrough that should open the door to studies of genomic variation in museum specimens. They used target enrichment (exon capture) and next‐generation (Illumina) sequencing to compare patterns of genetic variation in historic and present‐day population samples of alpine chipmunks (Tamias alpinus) (Fig. 1). The historic samples came from specimens collected in 1915, so the temporal span of this comparison is nearly 100 years.  相似文献   

12.
13.
As humans cause the redistribution of species ranges, hybridization between previously allopatric species is on the rise. Such hybridization can have complex effects on overall fitness of native species as new allelic combinations are tested. Widespread species introductions provide a unique opportunity to study selection on introgressed alleles in independent, replicated populations. We examined selection on alleles that repeatedly introgressed from introduced rainbow trout (Oncorhynchus mykiss) into native westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations in western Canada. We found that the degree of introgression of individual single nucleotide polymorphisms from the invasive species into the native is correlated between independent watersheds. A number of rainbow trout alleles have repeatedly swept to high frequency in native populations, suggesting parallel adaptive advantages. Using simulations, we estimated large selection coefficients up to 0.05 favoring several rainbow trout alleles in the native background. Although previous studies have found reduced hybrid fitness and genome‐wide resistance to introgression in westslope cutthroat trout, our results suggest that some introduced genomic regions are strongly favored by selection. Our study demonstrates the utility of replicated introductions as case studies for understanding parallel adaptation and the interactions between selection and introgression across the genome. We suggest that understanding this variation, including consideration of beneficial alleles, can inform management strategies for hybridizing species.  相似文献   

14.
In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations.  相似文献   

15.
16.
The allopatric model, which requires a period of geographical isolation for speciation to complete, has been the standard model in the modern era. Recently, “speciation with gene flow” has been widely discussed in relation to the model of “strict allopatry” and the level of DNA divergence across genomic regions. We wish to caution that genomic data by themselves may only permit the rejection of the simplest form of allopatry. Even a slightly more complex and realistic model that starts with subdivided populations would be impossible to reject by the genomic data alone. To resolve this central issue of speciation, other forms of observations such as the sequencing of reproductive isolation genes or the identification of geographical barrier(s) will be necessary.  相似文献   

17.
18.
Identifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes. Second, finding the individual loci involved in any trait is challenging given the respective limitations of quantitative and population genetic methods. In this issue of Molecular Ecology, Hendrick et al. (2016) overcome these difficulties and determine the genetic basis of microgeographic adaptation between geothermal vent and nonthermal populations of Mimulus guttatus in Yellowstone National Park. The authors accomplish this by combining population and quantitative genetic techniques, a powerful, but labour‐intensive, strategy for identifying individual causative adaptive loci that few studies have used (Stinchcombe & Hoekstra 2008 ). In a previous common garden experiment (Lekberg et al. 2012), thermal M. guttatus populations were found to differ from their closely related nonthermal neighbours in various adaptive phenotypes including trichome density. Hendrick et al. (2016) combine quantitative trait loci (QTL) mapping, population genomic scans for selection and admixture mapping to identify a single genetic locus underlying differences in trichome density between thermal and nonthermal M. guttatus. The candidate gene, R2R3 MYB, is homologous to genes involved in trichome development across flowering plants. The major trichome QTL, Tr14, is also involved in trichome density differences in an independent M. guttatus population comparison (Holeski et al. 2010) making this an example of parallel genetic evolution.  相似文献   

19.
Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land‐use change have affected contemporary range‐wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high‐throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled ‘Genomics and Forest Tree Genetics’ was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome‐enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.  相似文献   

20.
Parasitoid wasps are among the most diverse insects on earth with many species causing major mortality in host populations. Parasitoids introduce a variety of factors into hosts to promote parasitism, including symbiotic viruses, venom, teratocytes and wasp larvae. Polydnavirus‐carrying wasps use viruses to globally suppress host immunity and prevent rejection of developing parasites. Although prior results provide detailed insights into the genes viruses deliver to hosts, little is known about other products. RNAseq and proteomics were used to characterize the proteins secreted by venom glands, teratocytes and larvae from Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). These data revealed that venom glands and teratocytes secrete large amounts of a small number of products relative to ovaries and larvae. Venom and teratocyte products exhibited almost no overlap with one another or MdBV genes, which suggested that M. demolitor effector molecules are functionally partitioned according to their source. This finding was well illustrated in the case of MdBV and teratocytes. Many viral proteins have immunosuppressive functions that include disruption of antimicrobial peptide production, yet this study showed that teratocytes express high levels of the antimicrobial peptide hymenoptaecin, which likely compensates for MdBV‐mediated immunosuppression. A second key finding was the prevalence of duplications among genes encoding venom and teratocyte molecules. Several of these gene families share similarities with proteins from other species, while also showing specificity of expression in venom glands or teratocytes. Overall, these results provide the first comprehensive analysis of the proteins a polydnavirus‐carrying wasp introduces into its host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号