首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Percentages of tooth fracture and mandible shape are robust predictors of feeding habits in Carnivora. If these parameters co‐vary above the species level, more robust palaeobiological inferences could be made on fossil species. A test of association is presented between mandible shape and tooth fracture in a subset of extant carnivorans together with large Pleistocene fossil predators from Rancho La Brea (Canis dirus, Panthera atrox, and Smilodon fatalis). Partial least square (PLS) and comparative methods are employed to validate co‐variation of these two parameters in extant carnivorans. Association between mandible shape and percentage of tooth fracture is strongly supported, even if both blocks of data exhibit a phylogenetic signal to a different degree. Dietary adaptations drive shape/fracture co‐variation in extant species, although no significant differences occur in the PLS scores between carnivores and bone/hard food consumers. The fossil species project into PLS morphospace as outliers. Their position suggests a unique feeding behaviour. The increase in the size of prey, together with consumption of skin and hair from carcasses in a cold environment, might have generated unusual tooth breakage patterns in large predators from Rancho La Brea. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 70–80.  相似文献   

2.
Feeding behaviour and bite force of sabretoothed predators   总被引:2,自引:0,他引:2  
The feeding behaviour of extinct sabretoothed predators (machaeroidines, nimravids, barbourofelids, machairodonts and thylacosmilines) is investigated using beam theory. Because bite force applied along the mandible should be proportional to the external dimension of the mandibular corpus, patterns of variation in these dimensions at interdental gaps will reflect the adaptation of the jaw to specific loads, related to killing methods. Comparison of the mandibular force profiles of sabretooths to those of extant conical‐toothed carnivorans of known feeding behaviour reveals that sabretooths had a powerful bite, as strong or stronger than extant felids of similar mandibular length. Loads exerted at the lower canine were better constrained in the sagittal plane than in extant conical‐toothed carnivorans, indicating that prey was efficiently restrained when the sabre bite was delivered. The mandibular symphysis is generally better buttressed dorsoventrally in dirk‐toothed sabretooths than in scimitar‐toothed sabretooths, implying different killing strategies for the two ecomorphs: dirktooths delivered powerful sabre bites on prey they restrained with their forelimbs, while scimitartooths delivered slashing sabre bites and may have used their incisor battery to subdue their prey. The mandibular symphysis of Smilodon fatalis is less buttressed dorsoventrally than that of other dirk‐toothed sabretooths, possibly as a consequence of the greater torsional stresses induced while feeding rapidly on carcasses in response to intense competition. The mandibular symphysis of Thylacosmilus atrox is better buttressed dorsoventrally in juveniles than in adults, suggesting that young marsupial sabretooths underwent an extended period of parental care as typically observed in modern felids and inferred for eutherian sabretooths. Finally, machaeroidines and the nimravid Nimravus brachyops are exceptional in exhibiting a degree of dorsoventral buttressing of the mandibular symphysis that is intermediate between advanced sabretooths and conical‐toothed felids but similar to the extant Neofelis nebulosa, suggesting that the latter taxon may be close to the ancestral condition of a new sabretooth radiation. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 393–426.  相似文献   

3.
Abstract: Callistoe vincei Babot et al., 2002 is a Paleogene borhyaenoid known from exceptionally complete postcranial elements, which provides rare information about the anatomy and evolutionary history of metatherian predators during the South American Cenozoic. The axial skeleton of Callistoe is characterized by the peculiar transverse processes of the cervical vertebrae emphasizing lateral instead of sagittal traction. There is no clavicle and eighteen thoracolumbar vertebrae, of which only five are lumbars. The shoulder and elbow joints suggest movements restricted to parasagittal flexion/extension that are consistent with primarily terrestrial locomotion, as is also emphasized in Borhyaena tuberata and Lycopsis longirostrus. On the manus, the pollex is not reduced and the ungual phalanges indicate very long claws, similar to those observed in some extant digging taxa. This feature is unique to C. vincei among borhyaenoids. The knee joint is characterized by the presence of ossified patellae but shallow femoral trochleae. This joint suggests that the leg was nearly parasagittal, a position also inferred for Borhyaena. The astragalus shape is consistent with parasagittal flexion/extension, as in all Miocene–Pliocene borhyaenoids. The hind foot is characterized by reduced claws in comparison with the manus as well as the slenderness of the first and fifth digits, another peculiarity of C. vincei. The habitat of Callistoe was a temperate humid forest and according to the known fossil record, Callistoe was the largest mammalian predator of its time, sharing the predator ecological niche with crocodiles.  相似文献   

4.
The cranial anatomy of Dinilysia patagonica, a terrestrial snake from the Upper Cretaceous of Argentina, is redescribed and illustrated, based on high‐resolution X‐ray computed tomography and better preparations made on previously known specimens, including the holotype. Previously unreported characters reinforce the intriguing mosaic nature of the skull of Dinilysia, with a suite of plesiomorphic and apomorphic characters with respect to extant snakes. Newly recognized plesiomorphies are the absence of the medial vertical flange of the nasal, lateral position of the prefrontal, lizard‐like contact between vomer and palatine, floor of the recessus scalae tympani formed by the basioccipital, posterolateral corners of the basisphenoid strongly ventrolaterally projected, and absence of a medial parietal pillar separating the telencephalon and mesencephalon, amongst others. We also reinterpreted the structures forming the otic region of Dinilysia, confirming the presence of a crista circumfenestralis, which represents an important derived ophidian synapomorphy. Both plesiomorphic and apomorphic traits of Dinilysia are treated in detail and illustrated accordingly. Results of a phylogenetic analysis support a basal position of Dinilysia, as the sister‐taxon to all extant snakes. The fossil taxa Yurlunggur, Haasiophis, Eupodophis, Pachyrhachis, and Wonambi appear as derived snakes nested within the extant clade Alethinophidia, as stem‐taxa to the crown‐clade Macrostomata. The hypothesis of a sister‐group relationship between Dinilysia and Najash rionegrina, as suggested by some authors, is rejected by the results of our analysis. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 194–238.  相似文献   

5.
During the Neogene of South America, Anhingidae was represented by several species, mainly with greater sizes than the extant members. In the present contribution, body mass and locomotor habits of Anhinga minuta, the smallest known darter, were inferred. Body mass was estimated using two methods, one with measures of a tibiotarsus (the holotype) and the other, with measurements of a humerus; locomotor habits were inferred through muscular reconstructions and wing parameters (wing span, wing area and wing loading). Estimates of wing span and wing area were based on the length of humerus, assuming a condition of isometry with respect to Anhinga anhinga; wing loading was obtained through a relation formula between wing area and body mass. The results obtained indicate a body mass of about 729 g, a wing span of 0.958 m, a wing area of 0.117 m2 and a corresponding wing loading of 61 N/m2. These values and also the proximal insertion of the musculus pectoralis are consistent with those of a soaring bird but with more frequent flapping than extant anhingids. Furthermore, the inferred musculature for tibiotarsus indicates abilities for swimming, climbing and moving through the vegetation as in extant representatives.  相似文献   

6.
The first scolopocryptopid centipede known from the fossil record is a specimen of the subfamily Scolopocryptopinae in Miocene amber from Chiapas, southern Mexico. It is described here as Scolopocryptops simojovelensis sp. nov. , displaying a distinct combination of morphological characters compared to extant congeners. Anatomical details of the fossil specimen were acquired by non‐invasive 3D synchrotron microtomography using X‐ray phase contrast. The phylogenetic position of the new species is inferred based on a combination of morphological data with sequences for six genes (nuclear 18S and 28S rRNA, nuclear protein‐coding histone H3, and mitochondrial 12S rRNA, 16S rRNA, and protein‐coding cytochrome c oxidase subunit I) for extant Scolopendromorpha. The data set includes eight extant species of Scolopocryptops and Dinocryptops from North America, east Asia, and the Pacific, rooted with novel sequence data for other blind scolopendromorphs. The molecular and combined data sets, analysed in a parsimony/direct optimization framework, identified a stable pattern of two main clades within Scolopocryptopinae. North American and Asian species of Scolopocryptops are united as a clade supported by both morphological and molecular characters. Its sister group is a Neotropical clade in which the type species of Dinocryptops is nested within a paraphyletic assemblage of Scolopocryptops species; Dinocryptops is placed in synonymy with Scolopocryptops. The strength of support for the relationships of extant taxa from the molecular data allow the Chiapas fossil to be assigned with precision, despite ambiguity in the morphological data; the fossil is resolved as sister species to the extant Laurasian clade. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 768–786.  相似文献   

7.
Island tameness (reduced escape behaviour on islands where prey have experienced prolonged relaxation of predation pressure) is known in several taxa, although the relationships between recent predation pressure and escape on islands are poorly known. We investigated escape by numerous populations exposed to differing predation pressure of two sister species of Podarcis lizards in the Balearic Islands. Our main findings are that flight initiation distance was greater in Podarcis pityusensis than Podarcis lilfordi and increased as predation pressure increased in P. pityusensis. Island tameness led to extinction of P. lilfordi on Menorca and Mallorca following anthropogenic introduction of predators; this species is extant only on nearby islets. The lack of relationship between recent predation pressure and flight initiation distance in P. lilfordi indicates that the historically acquired deficit in the ability to adjust escape behaviour to predation pressure still exists. Podarcis pityusensis, which was exposed to greater natural predation pressure before human introduction of predators, survives on Ibiza and Formentera, as well as on islets. Retention of the ability to respond to predation pressure is consistent with our finding that flight initiation distance increases as predation pressure increases among current populations. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

8.
Pallenopsis patagonica (Hoek, 1881) is one of the most taxonomically problematic and variable pycnogonid species, and is distributed around the southern South American coast, and the Subantarctic and Antarctic areas. We conducted a phylogenetic analysis of mitochondrial cytochrome c oxidase subunit I (COI) sequences of 47 Pallenopsis specimens, including 39 morphologically identified as P. patagonica, five Pallenopsis pilosa (Hoek, 1881), one Pallenopsis macneilli Clark, 1963, one Pallenopsis buphtalmus Pushkin, 1993, and one Pallenopsis latefrontalis Pushkin, 1993. Furthermore, we studied morphological differences between the different COI lineages using light and scanning electron microscopy, including also material from Loman's and Hedgpeth's classical collections, as well as Hoek's type material of P. patagonica from 1881. The molecular results unambiguously reveal that P. patagonica is a complex of several divergent clades, which also includes P. macneilli, P. buphtalmus, and P. latefrontalis. Based on the material available, two major clades could be identified, namely a ‘Falkland’ clade, to which we assign the nominal P. patagonica, and a ‘Chilean’ clade, which is distinct from the ‘Falkland’ clade. We describe the ‘Chilean’ clade as new species, P allenopsis yepayekae sp. nov. Weis, 2013. All molecular results are confirmed by specific morphological characteristics that are discussed in detail and compared with Pallenopsis species closely related to the P. patagonica complex. Our results reveal that P. patagonica is a species‐rich complex that is in need for a thorough taxonomic revision, using both morphological and genetic approaches. © 2014 The Linnean Society of London  相似文献   

9.
Polyphenism has been suggested as an accelerator for morphological evolution and speciation. In the dung beetles of the genus Onthophagus, horn expression is polyphenic: large males develop horns whereas smaller males express greatly reduced or no horns. Horn static allometries seem to diverge rapidly amongst extant taxa, a process which might trigger changes in the male genital morphology, thus possibly promoting speciation as a by‐product. It can therefore be hypothesized that interspecific distances in allometries and, possibly, in other morphological traits mirror phylogenetic distances. In this study we first assessed the phylogenetic relationships amongst three closely related taxa belonging to the so‐called ‘Onthophagus fracticornis‐similis‐opacicollis’ species‐complex by sequencing the mitochondrial gene cytochrome oxidase subunit 1 (cox1). Biomolecular results indicated three independent lineages, the closest relationships being found between Onthophagus similis and Onthophagus opacicollis. Then we assessed the extent to which divergence pattern of horn static allometries and size and shape divergence patterns of one genital (paramere) and two nongenital (head and epipharynx) structures mirrored the phylogenetic relationships. Interspecific divergence patterns of horn static allometries, paramere, and head shape were found to be congruent with the evolutionary relationships inferred from biomolecular data. Nevertheless, paramere size and epipharynx shape showed patterns not consistent with the phylogeny. Furthermore, the relative size of nongenital structures showed little interspecific divergence compared to their shapes. Our results suggest that size and shape interspecific divergence mirror phylogeny only in part; they also indicate that distinct morphological traits may differ in their tendency to evolve in concert, and that size and shape of the same trait can evolve independently across species. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 482–498.  相似文献   

10.
Seedlings from the Cerro Cuadrado (Jurassic) Petrified Forest in Argentina have been shown to be comparable to extant araucarian seedlings from the sections Eutacta, Bunya and Colombea. Anatomically they are compared to the cone axes and embryos in the fossil cones of Araucaria mirabilis and Pararaucaria patagonica. Two seedlings previously described by Wieland are shown on pith structure to belong to P. patagonica. The remaining turbinate to top-shaped structures are compared with first year extant Bunya and Columbia seedlings and the cone A. mirabilis. Corm-like structures may represent an older seedling stage. From earlier work on the embryonic anatomy and germination stages described here, P. patagonica is deduced to have been epigeal and A. mirabilis hypogeal.  相似文献   

11.
Echimyidae constitute the most important radiation of caviomorph rodents in the Neotropical region, represented by 20 extant genera and several extinct species. Both in extant and fossil forms, this diversity is reflected by a significant morphological variation found in crown structures of the cheek teeth. Different hypotheses of primary homology have been proposed for these structures, which, in turn, support diverse dental evolutionary hypotheses. In this contribution we inspect the main structures (cusps and lophids) of the lower deciduous teeth and molars in extinct and extant Echimyidae, and establish their topological correspondences. Comparisons with cusps and lophids of Erethizontidae are emphasized. We explore the testing of alternative primary hypotheses of lophid correspondences in a cladistic context. Following a ‘dynamic’ approach, we select the hypothesis of primary homology, which produced the more parsimonious results, and evaluate the evolutionary transformations of the dental characters analysed. In this context, the phylogenetic relationships of living Myocastor coypus (Molina, 1782) with the extinct Tramyocastor and Paramyocastor are tested. Our results indicate that pentalophodonty is the derived condition for the lower molars in Echimyidae, that trilophodonty evolved independently at least three times during the evolutionary history of these rodents, and that tetralophodonty represents the plesiomorphic condition. This study shows that dental evolution in echimyids can be better understood when occlusal structures are expressed as reliably comparable characters, and when fossils are taken into account. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 451–480.  相似文献   

12.
Penguins have undergone dramatic changes associated with the evolution of underwater flight and subsequent loss of aerial flight, which are manifest and well documented in the musculoskeletal system and integument. Significant modification of neurosensory systems and endocranial spaces may also be expected along this locomotor transition. However, no investigations of the brain and sensory organs of extinct stem lineage Sphenisciformes have been carried out, and few data exist even for extant species of Spheniscidae. In order to explore neuroanatomical evolution in penguins, we generated virtual endocasts for the early Miocene stem penguin Paraptenodytes antarcticus, three extant penguin species (Pygoscelis antarctica, Aptenodytes patagonicus, Spheniscus magellanicus), and two outgroup species (the common loon Gavia immer and the Laysan albatross Phoebastria immutabilis). These endocasts yield new anatomical data and phylogenetically informative characters from the brain, carotid arteries, pneumatic recesses, and semicircular canal system. Despite having undergone over 60 million years of evolution since the loss of flight, penguins retain many attributes traditionally linked to flight. Features associated with visual acuity and proprioception, such as the sagittal eminence and flocculus, show a similar degree of development to those of volant birds in the three extant penguins and Paraptenodytes antarcticus. These features, although clearly not flight‐related in penguins, are consistent with the neurological demands associated with rapid manoeuvring in complex aquatic environments. Semicircular canal orientation in penguins is similar to volant birds. Interestingly, canal radius is grossly enlarged in the fossil taxon Pa. antarcticus compared to living penguins and outgroups. In contrast to all other living birds, the contralateral anterior tympanic recesses of extant penguins do not communicate. An interaural pathway connecting these recesses is retained in Pa. antarcticus, suggesting that stem penguins may still have employed this connection, potentially to enhance directional localization of sound. Paedomorphosis, already identified as a potential factor in crown clade penguin skeletal morphology, may also be implicated in the failure of an interaural pathway to form during ontogeny in extant penguins. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 202–219.  相似文献   

13.
14.
Gobekko cretacicus, a Cretaceous lizard from the Gobi Desert of Mongolia, is a key fossil for understanding gecko phylogeny. We revisit this fossil using high‐resolution X‐ray computed tomography. The application of this imaging method reveals new information about sutures, bone shape, and structural details of the palate and basicranium. These data were used to assess the phylogenetic affinities of Gobekko in the context of an existing squamate data set. The effects of character ordering, search strategy, and the addition of another putative gekkonomorph (Hoburogekko suchanovi) on inferred gekkonomorph relationships were explored. Available specimens of G. cretacicus are skeletally mature but have unfused nasals, frontals, and parietals, and (possibly) a persistent basicranial fenestra. Some putative gekkonomorphs are not consistently supported as closer to crown clade gekkotans than to autarchoglossans. In a strict consensus both Gobekko and Hoburogekko form a polytomy with extant geckos. Some of the adult character states of Gobekko are observable in embryos of extant species. The evolution of tubular frontals and dentaries in gekkotans may be structurally related to the loss of the postorbital and supratemporal bars in this lineage. The complete lack of a parietal foramen, and presumably a light‐sensitive parietal eye, in this clade is of interest and could indicate an early origin of nocturnality in geckos. © 2013 The Linnean Society of London  相似文献   

15.
16.
Evolutionary shape changes in skull and mandibular anatomy was analysed in 223 specimens of pantherine felids (Neofelis nebulosa, Panthera leo, Panthera onca, Panthera pardus, Panthera tigris, Panthera uncia) compared to a small‐felid outgroup, consisting of 86 specimens of nine different species, using digital surface morphometry on 25 (skull) and 17 (mandible) landmarks. Shape evolution in the pantherine species is complex and nonlinear, and involves both large‐scale and small‐scale shape changes. Shape changes frequently differ among the ingroup species, but the four large Panthera species (leo, onca, pardus, tigris) bear some resemblance to each other. The leopard and jaguar bear the closest resemblance to each other, and several shape changes are common to the lion and tiger, but have probably evolved convergently as a result of large size. The lion has undergone the largest and most numerous shape changes from a small‐felid outgroup. Certain shape changes in the skull and, in some respects, the mandible of the clouded leopard bear resemblance to those in the four large Panthera species. The snow leopard is often regarded as the most primitive of the extant Panthera, and skull and mandibular shape changes often diverge markedly from those observed in the other five ingroup taxa; its overall skull shape is rather similar to the small‐felid outgroup. This indicates that the shape changes in the clouded leopard are convergent with those of the four large Panthera species. Landmark integration showed no significant correlation with molecular phylogeny, chiefly owing to the snow leopard being placed among the four large Panthera species. A traditional phylogenetic topology with the snow leopard as the basal‐most species of Panthera yielded a weak but nonsignificant phylogenetic signal. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 766–778.  相似文献   

17.
Molecular phylogenetics has resulted in conflicting accounts of the relationship between phoronids and brachiopods. Taxonomically comprehensive analyses of brachiopod and phoronid ribosomal DNA sequences (rDNAs) rooted with short‐branched mollusc sequences uniformly find that phoronids nest within brachiopods as the sister of the three extant inarticulate lineages. Here, this is called the ‘alternate’ topology because it does not match traditional, morphology‐based ideas. Many other analyses of protein‐coding genes and/or rDNAs place phoronids elsewhere, often as the sister group of all brachiopods, better matching ‘traditional’ ideas. However, these analyses generally are based on data from small selections of brachiopods and phoronids, include data from a wide range of other metazoan taxa, and are rooted with distant outgroups. Here, I show that outgroup rooting of brachiopods and phoronid rDNAs is unreliable, and instead find the root position with procedures that are free from all distortions caused by distantly related taxa, i.e. by Bayesian and maximum likelihood relaxed‐clock analyses of a purely ingroup alignment. All such analyses confirm the ‘alternate’ topology: phoronids belong within the Brachiopoda as the sister group of the inarticulates. In addition, nine factors are identified that (singly or in combination) can cause misreporting of the phylogenetic signal in wide taxon‐range analyses of both rDNA and amino acid sequence data. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012.  相似文献   

18.
Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies. In this article, we investigated the conspicuousness of the aposematic red‐and‐black firebug, Pyrrhocoris apterus, by presenting images of natural and digitally manipulated phenotypes in their natural habitat on a computer screen to human ‘predators’, and comparing the detection times. We asked whether the natural colour pattern can be made more or less conspicuous by rearranging the spatial distribution of colour elements. Hence, we created a phenotype in which the black colour elements were moved to the body outline to test for a possible disruptive effect. In the ‘black’ and ‘red’ manipulations, we removed one of the two colours, creating two uniform colour variants. We found that some of our manipulations increased, but none reduced, the detection time significantly; this indicates that the naturally coloured firebug is highly conspicuous. The detection time varied among backgrounds and there was a significant relationship between detection time and chromatic similarity between the bug and the background for the natural and black phenotypes. Although background colour composition has an important effect on the signal, we argue that the coloration of P. apterus has evolved for high conspicuousness. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 806–816.  相似文献   

19.
The ability of sabretoothed felids to achieve sufficiently high bite forces for predation at extreme gape angles has been the subject of decades of debate. Previous studies have indicated that bite forces in derived sabretoothed felids would have been low, but that they were probably augmented by head depressing muscles. However, bite mechanics is a dynamic process, and mechanical properties change with changes in gape angles. In this study, I present the first comprehensive model of bite mechanics, vector angles, and forces about the temporomandibular joint at gape angles from occlusion to maximal inferred gape in sabretoothed felids. Primitive sabrecats (Machairodus, Paramachairodus) appear broadly comparable to extant large felids (Panthera, Puma), but derived sabrecats in the groups Homotherini (Amphimachairodus, Homotherium, Xenosmilus) and Smilodontini (Megantereon, Smilodon) are often substantially different from either of the former. The ability of the mandibular adductors to generate torque changes with gape angle, indicating that previous models fail to capture potentially important differences in bite function. Inferred muscle sizes and the angles of effective torque from individual adductor fibres in derived sabrecats are different from those of primitive sabrecats and extant large felids, but they had evolved a number of compensatory adaptations for maximizing force output at the canine and carnassial, primarily changes in muscle fibre angles and more compact crania. Inferred outforces at the canines and carnassials were comparable amongst all groups at low gape angles, but at extreme gape angles outforces would have been low, supporting previous hypotheses of head flexor contribution during initial stages of the killing bite in sabrecats. Mandibular adduction in extant carnivores is a complicated pattern of differences in twitch tension and electromyographical activity at different gape angles, and inference of maximal isotonic bite forces from reconstructed mandibular adductor sizes in fossils will give estimates primarily suitable for comparative purposes. Potentially, derived sabrecats could have evolved differences from extant felids in adductor histochemistry or pinnation angle of individual fibres. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 220–242.  相似文献   

20.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号