首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient energy transfer has been reconstituted between an antenna pigment-protein and reaction centres isolated from the photosynthetic membrane of Rhodopseudomonas sphaeroides. The reconstituted system has fluorescence induction kinetics and fluorescence yields similar to those obtained from antenna bacteriochlorophyll in chromatophores. The results indicated that closed reaction centres quench fluorescence from the antenna pigment-protein, although not as strongly as photochemically active reaction centres. The measurement of fluorescence yields from chromatophores of the reaction centreless mutant PM-8 and of the parent strain Ga confirmed these observations.The fluorescence yield from the reconstituted system was approximately the same whether the reaction centres had been closed by photo-oxidation of the bacteriochlorophyll electron donor or chemical reduction of the primary acceptor, indicating a similar lifetime for the excited singlet state in both states of the reaction centres.  相似文献   

2.
Luit Slooten 《BBA》1973,314(1):15-27
1. The excitation spectrum for the bacteriochlorophyll P890 fluorescence in reaction centre preparations was determined at wavelengths ranging from 360 to 890 nm.2. A fluorescence excitation spectrum corresponding to the absorbance spectrum of bacteriopheophytin was also obtained. This spectrum was used in an analysis of the absorbance spectrum of a reaction centre preparation. Based on this spectrum and on literature data, we estimated that the bacteriopheophytin: bacteriochlorophyll ratio in reaction centre particles is at least 1 : 2.3. On the basis of literature data, it is shown that bacteriopheophytin occurs probably as such in reaction centres in vivo.  相似文献   

3.
《FEBS letters》1986,198(2):268-272
The kinetics of the fluorescence emitted by the ‘special pair’ of bacteriochlorophyll b molecules in reaction centres from Rhodopseudomonas viridis was recorded in the near infrared, with a time resolution of 1 ns. In nonreduced reaction centres two decay components were resolved with lifetimes of <0.5 and 2.5 ns. Upon reduction of the menaquinone electron acceptor three decay components were detected with lifetimes of < 0.5, 2.5 and 15ns.  相似文献   

4.
V.I. Godik  A.Y. Borisov 《BBA》1980,590(2):182-193
The ratio between the intensities of delayed and prompt fluorescence was studied for different photosynthetic objects under different conditions by a modulation method. The method is based on excitation of luminescing objects by light, modulated harmonically, and on a combined study of phase shifts and demodulation coefficients of the luminescence as related to excitation light. The presence of intense delayed emissions was revealed in purple bacteria, Ectothiorhodospira shaposhinokovii, Rhodospirillum rubrum and Rhodopseudomonas sphaeroides, in the micro- and nanosecond range. Under conditions of saturating light, their proportion was several percent of the total emission.The most striking phenomenon was observed under reducing conditions (addition of 1 · 10?2 M Na2S2O4 to whole-cell suspensions of purple bacteria) where the intensity of the delayed emissions grew dramatically and became comparable to that of prompt fluorescence.The data obtained indicate that, at room temperature, reversal of some early stages of charge separation in bacterial reaction centres may proceed largely via the channel that includes generation of the reaction-centre bacteriochlorophyll in the excited singlet state, followed by excitation-energy migration to antenna bacteriochlorophyll.The relation of these phenomena to the efficiency of solar energy utilization in photosynthetic apparatus is discussed.  相似文献   

5.
Using the pulse picosecond fluorometric technique the fluorescence properties of intact cells, isolated chromatophores and photosynthetic reaction centres were studied in bacteria Rhodopseudomonas sphaeroides, strain 1760-1.The fluorescent emission from reduced reaction centres excited by 694.3 nm light has a biphasic character, the lifetimes of the components being τ1 = 15±8 ps and τ2 = 250 ps. The faster component, τ1, contributes to the integral fluorescence in the long wavelength region. It disappears with oxidation of the reaction centres and is attributed to photoactive bacteriochlorophyll P870. The slow component, τ, is apparently due to both bacteriochlorophyll P800 and bacteriopheophytin. The fluorescence from intact cells exhibits a monophasic pattern and decays with τ = 200 ps.The fluorescence emitted by chromatophores comprises two components with τ3 = 200 ps and τ4 = 4200 ps. The duration of fluorescence τ3 increases to its maximum of 500–550 ps, as P870 is oxidized chemically or photochemically, while τ4 remains unchanged. The fluorescence with a lifetime of 200 ps was ascribed to the photosystem and the 4200-ps fluorescence to bacteriochlorophyll which had lost its functional links with the photosystem.The rise time of the fluorescence emitted by chromatophores varies from 60 or 70 ps to 350 ps depending on the wavelength of the exciting light and the recorded spectral region. On the basis of our findings the rate for energy migration was estimated to be 109 s?1.  相似文献   

6.
Efficient energy transfer has been reconstituted between an antenna pigment-protein and reaction centres isolated from the photosynthetic membrane of Rhodopseudomonas sphaeroides. The reconstituted system has fluorescence induction kinetics and fluorescence yields similar to those obtained from antenna bacteriochlorophyll in chromatophores. The results indicated that closed reaction centres quench fluorescence from the antenna pigment-protein, although not as strongly as photochemically active reaction centres. The measurement of fluorescence yields from chromatophores of the reaction centreless mutant PM-8 and of the parent strain Ga confirmed these observations. The fluorescence yield from the reconstituted system was approximately the same whether the reaction centres had been closed by photo-oxidation of the bacteriochlorophyll electron donor or chemical reduction of the primary acceptor, indicating a similar lifetime for the excited singlet state in both states of the reaction centres.  相似文献   

7.
G. Porter  J.A. Synowiec  C.J. Tredwell 《BBA》1977,459(3):329-336
A technique for measuring relative quantum yields of fluorescence with a picosecond streak camera is described. We show that Chlorella pyrenoidosa exhibit an intensity dependent quantum yield when irradiated with single picosecond light pulses. This effect also occurs under conditions that inhibit the activity of the reaction centres, which can therefore be excluded as the cause.When a pulse train (pulse separation 6.9 ns) was used, the quantum yield was further reduced by the light absorbed from previous pulses, which indicates the formation of a quenching species having a relatively long lifetime.Absolute quantum yields calculated from the fluorescence decay show that single excitation pulses of 3 · 1013 photons/cm2 give results comparable to those obtained by very low intensity methods.  相似文献   

8.
From a combined study of (1) bacteriochlorophyll fluorescence lifetimes, (2) relative yields and (3) differential absorption changes corresponding to the reaction centres photooxidation, the absolute values of fluorescence lifetimes and quantum yields for two bacteriochlorophyll fractions have been calculated. The main bacteriochlorophyll fraction (80–90%) serving as a light-gathering antenna for reaction centresP 890 is characterized by dark values of fluorescence lifetimes of the order of 10–11 sec and fluorescence yields of 10–3. The remaining part of the bulk pigment, not associated withP 890 as far as excitation energy transfer is concerned, has an approximately constant fluorescence yield of about 5–8% and lifetime of about 10–9 sec. Basing on these results, excitation jump times and intermolecular coupling energies were estimated to be 10–13 sec and 10–2 ev respectively. The conclusion is made that excitation energy transfer in the main part of bacteriochlorophyll occurs by the exciton mechanism at moderate intermolecular energies.  相似文献   

9.
Arne Schumacher  Gerhart Drews 《BBA》1978,501(2):183-194
Cells of Rhodopseudomonas capsulata cultivated at an oxygen partial pressure of 400 mmHg in the dark contained 0.1 nmol or less total bacteriochlorophyll per mg membrane protein. The bacteriochlorophyll was found in the reaction center (10 pmol bacteriochlorophyll/mg membrane protein) and in the light harvesting bacteriochlorophyll I but not in the light harvesting bacteriochlorophyll II. Formation of the photosynthetic apparatus in those cells was induced by incubation at a very low oxygen tension in the dark. Reaction center bacteriochlorophyll and light harvesting bacteriochlorophyll increased three fold after 60 min of incubation at 1–2 mmHg (pO2). Light harvesting bacteriochlorophyll II increased strongly after 60 min and became dominating after 90 min of incubation. The total bacteriochlorophyll content doubled every 30 min, but synthesis of reaction center bacteriochlorophyll proceeded at much lower rates. Consequently the size of the photosynthetic unit (total bacteriochlorophyll/reaction center bacteriochlorophyll) increased from 15 to 52 during 150 min of incubation. The proteins of the photosynthetic apparatus were synthesized concomitantly with bacteriochlorophyll.Cells which were incubated at 0.5 mmHg (pO2) do not grow but form the photosynthetic apparatus. During the first hours of incubation light harvesting bacteriochlorophyll I and reaction center bacteriochlorophyll were the dominant bacteriochlorophyll species, but light harvesting bacteriochlorophyll II was synthesized only in small amounts. Total bacteriochlorophyll and reaction center bacteriochlorophyll increased from 30 min up until 210 min of incubation more than 10 fold. The final concentrations of total bacteriochlorophyll and reaction center bacteriochlorophyll were 8.6 nmol and 0.26 nmol per mg membrane protein, respectively. The three protein components of the reaction centers (mol. wts. 28 000, 24 000 and 21 000) and the protein of the light harvesting I complex (mol. wt. 12 000) were incorporated simultaneously. The protein of band 1 (mol. wt. 14 000) which was present in the isolated light harvesting complex II, was synthesized only in very small amounts. The proteins of bands 3 and 4 (mol. wt. 10 000 and 8000) however, which were shown to be associated with light harvesting bacteriochlorophyll II, were synthesized in noticeable amounts as was light harvesting bacteriochlorophyll II. In addition a protein with an apparent molecular weight of 45 000 showed a strong incorporation of 14C-labeled amino acids. This protein comigrates with one protein which was found to be associated with a green pigment excreted during incubation at 0.5 Torr into the medium. The in vivo-absorption maxima of this pigment complex were 660, 590, 540, 417 and 400 nm. The succinate oxidase and the NADH oxidase seemed to be incorporated into the newly formed intracytoplasmic membrane only in very small amounts. Thus, reaction center and light harvesting bacteriochlorophyll and their associated proteins were simultaneously synthesized, whereas light harvesting complex II is the variable part of the photosynthetic apparatus.  相似文献   

10.
H.J.M. Kramer  H. Kingma  T. Swarthoff  J. Amesz 《BBA》1982,681(3):359-364
Excitation spectra were measured at 4 K of bacteriochlorophyll a fluorescence in reaction center containing pigment-protein complexes obtained from the green photosynthetic bacterium Prosthecochloris aestuarii. Excitation spectra for the longest-wave emission (838 nm) showed bands of bacteriochlorophyll a, carotenoid, and of a pigment with absorption bands at 670, 438 and possibly near 420 nm, which is probably identical to an unidentified porphyrin described in the preceding paper (Swarthoff, T., Kramer, H.J.M. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 354–358). At room temperature the longest-wave emission is stimulated by a magnetic field, which indicates that at least part of the emission is delayed fluorescence brought about by a reversal of the primary charge separation. Below about 150 K no stimulation was observed. The excitation spectra for short-wave emission (828 nm) were very similar to the absorption spectrum of the isolated antenna bacteriochlorophyll a-protein complex, and showed bands of bacteriochlorophyll a only. This indicates that two forms of the antenna protein exist that are spectroscopically similar: a soluble form that is released by treatment with guanidine hydrochloride and a bound form that remains attached to the reaction center complex. The bands of the antenna complexes were weak in the excitation spectra of the 838 nm fluorescence, which indicates that the efficiency of energy transfer to the reaction center complex is low.  相似文献   

11.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

12.
Lu  C; Zhang  J 《Journal of experimental botany》1998,49(327):1671-1679
Analyses of CO2 exchange and chlorophyll fluorescence were carried out to assess photosynthetic performance during senescence of maize leaves. Senescent leaves displayed a significant decrease in CO2 assimilatory capacity accompanied by a decrease in stomatal conductance and an increase in intercellular CO2 concentration. The analyses of fluorescence quenching under steady-state photosynthesis showed that senescence resulted in an increase in non-photochemical quenching and a decrease in photo-chemical quenching. It also resulted in a decrease in the efficiency of excitation energy capture by open PSII reaction centres and the quantum yield of PSII electron transport, but had very little effect on the maximal efficiency of PSII photochemistry. The results determined from the fast fluorescence induction kinetics indicated an increase in the proportion of QB-non-reducing PSII reaction centres and a decrease in the rate of QA reduction in senescent leaves. Theoretical analyses of fluorescence parameters under steady-state photosynthesis suggest that the increase in the non-photochemical quenching was due to an increase in the rate constant to thermal dissipation of excitation energy by PSII and that the decrease in the quantum yield of PSII electron transport was associated with a decrease in the rate constant of PSII photochemistry. Based on these results, it is suggested that the decrease in the quantum yield of PSII electron transport in senescent leaves was down-regulated by an increase in the proportion of QB-non-reducing PSII reaction centres and in the non-photochemical quenching. The photosynthetic electron transport would thus match the decreased demand for ATP and NADPH in carbon assimilation which was inhibited significantly in senescent leaves.Key words: Chlorophyll fluorescence, gas exchange, maize (Zea mays L.), photochemical and non-photochemical quenching, photosystem II photochemistry.   相似文献   

13.
《BBA》1986,848(1):77-82
Isolated chlorosomes of the photosynthetic green sulfur bacterium Chorobium limicola upon cooling to 4 K showed, in addition to the near-infrared absorption band at 753 nm due to bacteriochlorophyll c, a weak band near 800 nm that could be attributed to bacteriochlorophyll a. The emission spectrum showed bands of bacteriochlorophyll c and a at 788 and 828 nm, respectively. The fluorescence excitation spectrum indicated a high efficiency of energy transfer from bacteriochlorophyll c to bacteriochlorophyll a. When all bacteriochlorophyll c absorption had been lost upon storage, no appreciable change in the optical properties of the bacteriochlorophyll a contained in these ‘depleted chlorosomes’ was observed. The fluorescence and absorption spectra of the chlorosomal bacteriochlorophyll a were clearly different from those of the soluble bacteriochlorophyll a protein present in these bacteria. The results provide strong evidence that bacteriochlorophyll a, although present in a small amount, is an integral constituent of the chlorosome. It presumably functions in the transfer of energy from the chlorosome to the photosynthetic membrane; its spectral properties and the orientation of its near-infrared optical transitions as determined by linear dichroism are such as to favor this energy transfer.  相似文献   

14.
This study focused on the deleterious effect of anthracene (ANT) and role of a surfactant, Triton (TX-100), in recovery from inhibitory effect of ANT. Fast chlorophyll (Chl) fluorescence measurements were performed in wheat plants. Results revealed that maximum quantum yield of PSII, area over the fluorescence curve, performance index (PI), and reaction centre density was negatively affected by ANT treatment. The effects on PSII quantum efficiency, reaction centre density, absorption, and trapping were partially recovered by TX-100. PSII heterogeneity in terms of PSII antenna heterogeneity, corresponding to PSII α, β, and γ centres, and reducing side, corresponding to QB-reducing and QB-nonreducing centres, were also investigated. The damage caused by ANT to PSII antenna heterogeneity was recovered almost by 100% owing to TX-100.  相似文献   

15.
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.  相似文献   

16.
In this paper we suggest a basic mechanism for the utilization of light quanta in photosynthesis. Through interactions between the lowest lying triplet state of the reaction-center chlorophylls and the first excited singlet state of the antenna chlorophylls, absorbed light quanta are upconverted to a higher-lying charge transfer state of the reaction-center Chl molecules. It is shown that the efficiency of the upconversion process is maximized by the parallel configuration of the two Chl porphyrin rings in the reaction-center water adduct proposed by the writer. Steady-state solutions are obtained, and the theoretical results are shown to account for a variety of crucial experimental observations including (1) the doubling (in whole cells) of in vivo fluorescence quantum yield of system II in strong light, (2) the observation by Dutton et al. of the light-induced triplet-state reaction-center bacteriochlorophyll when the primary electron acceptor is reduced and (3) despite the apparent involvement of two excitations in the energy upconversion process, only one quantum is needed for the transfer of one electron in the primary photo-chemical reaction, satisfying the eight-quanta requirement for the evolution of one O2 molecule in photosynthesis.  相似文献   

17.
Elisha Tel-Or  Shmuel Malkin 《BBA》1977,459(2):157-174
The photochemical activities and fluorescence properties of cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum were compared. The photochemical activities were measured in a whole range of wavelengths and expressed as quantum yield spectra (quantum yield vs. wavelength). The following reactions were measured: Photosynthesis (O2 evolution) in whole cells; Hill reaction (O2 evolution) with Fe(CN)63? and NADP as electron acceptors (Photosystem II and Photosystem II+Photosystem I reactions); electron transfer from reduced 2,6-dichlorophenolindophenol to diquat (Photosystem I reaction). The fluorescence properties were emission spectra, quantum yield spectra and the induction pattern.On the basis of comparison between the quantum yield spectra and the pigments compositions the relative contribution of each pigment to each photosystem was estimated. In normal cells and spheroplasts it was found that Photosystem I (Photosystem II) contains about 90 % (10 %) of the chlorophyll a, 90 % (10 %) of the carotenoids and 15 % (85 %) of the phycocyanin. In spheroplast particles there is a reorganization of the pigments: they loose a certain fraction (about half) of the phycocyanin but the remaining phycocyanin attaches itself exclusively to Photosystem I (!). This is reflected by the loss of Photosystem II activity, a flat quantum yield vs. wavelength dependence and a loss of the fluorescence induction.The fluorescence quantum yield spectra conform qualitatively to the above conclusion. More quantitative estimation shows that only a fraction (20–40 %) of the chlorophyll of Photosystem II is fluorescent. Total emission spectrum and the ratio of variable to constant fluorescence are in agreement with this conclusion.The fluorescence emission spectrum shows characteristic differences between the constant and variable components. The variable fluorescence comes exclusively from chlorophyll a; the constant fluorescence is contributed, in addition to chlorophyll a, by phycocyanine and an unidentified long wavelength component.The variable fluorescence does not change in the transition from whole cells to spheroplasts. However, the constant fluorescence increases considerably. This indicates the release of a small fraction of pigments from the photosynthetic photochemical apparatus which then become fluorescent.  相似文献   

18.
Magnesium (Mg2+) is the ubiquitous metal ion present in chlorophyll and bacteriochlorophyll (BChl), involved in photosystems in photosynthetic organisms. In the present study we investigated targets of toxic copper binding to the photosynthetic apparatus of the anoxygenic purple bacterium Rhodospirillum rubrum. This was done by a combination of in vivo measurements of flash photolysis and fast fluorescence kinetics combined with the analysis of metal binding to pigments and pigment-protein complexes isolated from Cu-stressed cells by HPLC-ICPMS (ICP-sfMS). This work concludes that R. rubrum is highly sensitive to Cu2+, with a strong inhibition of the photosynthetic reaction centres (RCs) already at 2 μM Cu2+. The inhibition of growth and of RC activity was related to the formation of Cu-containing BChl degradation products that occurred much more in the RC than in LH1. These results suggest that the shift of metal centres in BChl from Mg2+ to Cu2+ can occur in vivo in the RCs of R. rubrum under environmentally realistic Cu2+ concentrations, leading to a strong inhibition of the function of these RCs.  相似文献   

19.
The effects of ultraviolet radiation (up to 0.6 J/cm2) on the absorption spectra and electron transfer in dehydrated films of photosynthetic reaction centers from purple bacteria Rb. sphaeroides and hybrid structures that included reaction centers, quantum dots, and protein structure stabilizers (trehalose, polyvinyl alcohol, and methylcellulose) have been studied. Ultraviolet irradiation led to partial destruction of bacteriochlorophyll molecules (pheophytinization) and the reaction center carotenoid. In this case, ultraviolet irradiation did not exert a significant effect on electron transfer between the photoactive bacteriochlorophyll and quinone electron acceptors. The incorporation of reaction centers into organic matrices reduced pheophytinization. Trehalose was the most efficient in reducing the damage evoked by ultraviolet irradiation of the carotenoid molecule. Hybrid films that contained quantum dots were resistant to pheophytinization upon ultraviolet irradiation, but the presence of quantum dots did not affect the processes of carotenoid destruction upon exposure to ultraviolet radiation. Ultraviolet radiation had an insignificant effect on the characteristics of quantum dots (the fluorescence lifetime).  相似文献   

20.
Effects of dehydration on the quantum yield of charge separation in the reaction centres, fluorescence and nanosecond recombination luminescence in R. rubrum chromatophores have been investigated. It has been shown that dehydration results in more than a 10 times decrease in the quantum efficiency of photosynthesis. Besides, photoinduced fluorescence changes practically disappear in dehydrated samples and the parameters of nanosecond luminescence substantially change. These observations indicate that strong dehydration causes a deterioration of the primary charge separation process at the early picosecond stages of excitation energy transduction into energy of separated charges. This is, probably, due to either changes in the dynamic characteristics of the reaction centre pigment-protein complex or alteration in the structure state (spacings and mutual orientations) of the primary reactants involved in the primary charge separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号