首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual traits vary tremendously in static allometry. This variation may be explained in part by body size‐related differences in the strength of selection. We tested this hypothesis in two populations of vervet monkeys, using estimates of the level of condition dependence for different morphological traits as a proxy for body size‐related variation in the strength of selection. In support of the hypothesis, we found that the steepness of allometric slopes increased with the level of condition dependence. One trait of particular interest, the penis, had shallow allometric slopes and low levels of condition dependence, in agreement with one of the most consistent patterns yet detected in the study of allometry, namely that of genitalia exhibiting shallow allometries. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 527–537.  相似文献   

2.
Insect genitals vary greatly among species and provide a key tool for species-level taxonomy. Insects differing in the genitalia are often treated as discrete, reproductively isolated species. This principle dates back to the lock-and-key hypothesis, which states that genitalia vary between species in order to provide a mechanical reproductive isolation system. Thus, the hypothesis assumes low within-species variability in genital traits. However, recent studies suggest that sexual selection may be responsible for the evolution of insect genitalia. We studied allometry and genital size and shape variation in a dimorphic moth Selenia tetralunaria . We found that the genitalia showed negative allometry in relation to body size as reported in many insect and spider species. This allometry was stronger in internal genital structures than it was in external genitalia. We also found that there was more variation in internal compared with external genitalia. Finally, we found that the shape of genital structures differed between morphs in all three examined areas. S. tetralunaria is among the first reported cases of genitally dimorphic insect species. Considerable variation in internal genitalia and especially the presence of genital shape differences between morphs were not consistent with the predictions of the lock-and-key hypothesis.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 297–307.  相似文献   

3.
Bat genitalia: allometry, variation and good genes   总被引:5,自引:0,他引:5  
Male genitalia are typically highly variable across species, for which sexual selection is thought to be responsible. Sexually selected traits characteristically show positive allometry and high phenotypic variation, although genitalia seem to be typified by negative allometry due to stabilizing selection. Additionally, while sexual selection appears to be the primary force responsible for genital evolution, the precise mechanism is unclear, but good-genes selection could be involved. If so, male genital variation should correlate with some male quality measure(s). We investigated the allometry of male Nyctalus noctula genitalia and investigated associations between genital size and three phenotypic measures of male quality (body size, relative body mass, and fluctuating asymmetry (FA)). We found that the penis exhibited positive allometry and high phenotypic variation, and was positively associated with male body size and relative body mass, but not with FA. This pattern is more typical of sexually selected display traits, contrasting with general patterns of genital allometry. The baculum was negatively allometric and was not associated with any quality measure. Our results suggest that the N. noctula penis is under directional sexual selection and is a reliable indicator of male phenotypic quality.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 497–507.  相似文献   

4.
Divergence between populations adapting to different environments may be facilitated when the populations differ in their sexual traits. We tested whether colonizing a novel environment may, through phenotypic plasticity, change sexual traits in a way that could alter the dynamics of sexual selection. This hypothesis has two components: changes in mean phenotypes across environments, and changes in the genetic background of the phenotypes that are produced -- or genotype x environment interaction (G x E). We simulated colonization of a novel environment and tested its effect on the mating signals of a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae), a clade that has diverged in a process involving host plant shifts and signal diversification. We found substantial genetic variation and G x E in most signal traits measured, with little or no change in mean signal phenotypes. We suggest that the expression of extant genetic variation across old and novel environments can initiate signal divergence.  相似文献   

5.
Male genitalia evolve through sexual selection and, in insects, tend to show negative static allometry, low phenotypic variation, and are usually relatively small. Much less is known about the genetic variation and heritability of male genitalia. Additionally, in instances where the intromittent organ is greatly elongated, it is unclear whether typical patterns of genital scaling and variation also apply. In the present study, we investigated the allometry, variation, and heritability of male genital length in the seedbug, Lygaeus equestris , a species with a greatly elongated intromittent organ (i.e. almost as long as male body size). We found that genital length was negatively allometric, in spite of its great length, and was no more variable than nongenital traits. Additionally, genital length was significantly heritable and had considerable evolvability.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 400–405.  相似文献   

6.
Theory predicts that selection acting across environments should erode genetic variation in reaction norms; i.e., selection should weaken genotype × environment interaction (G × E). In spite of this expectation, G × E is often detected in fitness-related traits. It thus appears that G × E is at least sometimes sustained under selection, a possibility that highlights the need for theory that can account for variation in the presence and strength of G × E. We tested the hypothesis that trait differences in developmental architecture contribute to variation in the expression of G × E. Specifically, we assessed the influence of canalization (robustness to genetic or environmental perturbations) and condition-dependence (association between trait expression and prior resource acquisition or vital cellular processes). We compared G × E across three trait types expected to differ in canalization and condition-dependence: mating signals, body size-related traits, and genitalia. Because genitalia are expected to show the least condition-dependence and the most canalization, they should express weaker G × E than the other trait types. Our study species was a member of the Enchenopa binotata species complex of treehoppers. We found significant G × E in most traits; G × E was strongest in signals and body traits, and weakest in genitalia. These results support the hypothesis that trait differences in developmental architecture (canalization and condition-dependence) contribute to variation in the expression of G × E. We discuss implications for the dynamics of sexual selection on different trait types.  相似文献   

7.
One‐size‐fits‐all and related hypotheses predict that static allometry slopes for male genitalia will be consistently lower than 1.0 and lower than the slopes for most other body parts (somatic traits). We examined the allometry of genitalic and somatic morphological traits in males and females of two species of noctuid moths, Spodoptera exigua (Hübner, [1808]) and Helicoverpa armigera (Hübner, [1808]). The relationship between genitalic traits and body size was generally strongly negative‐allometric in males but with no significant differences from 1.00 in females of the two species examined. However, in females, the slope of genital traits was also lower than the slopes for somatic traits. The relationship between somatic traits and the body size indicator was approximately isometric in most cases in males, except in four traits in S. exigua, in which the slopes showed slight negative allometry, and the hind tibia in H. armigera, in which the slope had positive allometry. However, in females, some somatic traits showed isometric and some other showed negative allometry in both species. The coefficients of variation (CV) for all structures in the males were low, not exceeding 10%. Genitalic traits showed significantly lower CV than somatic traits in males. In females, somatic traits showed lower CV than genitalic traits but with no significant difference in the H. armigera. Our observations of strongly negative allometry for genitalic traits in males are consistent with stabilizing selection on genital size and we suggest that male performance in interactions with females is the source of selection on male genital allometry. The difference in the degree of phenotypic variation between genitalic and somatic traits in the two studied species is attributed to the different developmental‐genetic architectures of these traits. Female genitalia showed a similar trend to the males, although the difference between genital and somatic traits was not significant in females. This finding suggests that selection is acting differently on male and female genitalia. Positive allometry of hind tibia in H. armigera may be a result of secondary sexual function.  相似文献   

8.
Evolutionary divergence in behavioural traits related to mating may represent the initial stage of speciation. Direct selective forces are usually invoked to explain divergence in mate‐recognition traits, often neglecting a role for neutral processes or concomitant differentiation in ecological traits. We adopted a multi‐trait approach to obtain a deeper understanding of the mechanisms behind allopatric divergence in the Amazonian frog, Allobates femoralis. We tested the null hypothesis that geographic distance between populations correlates with genetic and phenotypic divergence, and compared divergence between mate‐recognition (acoustic) and ecological (coloration, body‐shape) traits. We quantified geographic variation in 39 phenotypic traits and a mitochondrial DNA marker among 125 individuals representing eight populations. Geographic variation in acoustic traits was pronounced and tracked the spatial genetic variation, which appeared to be neutral. Thus, the evolution of acoustic traits tracked the shared history of the populations, which is unexpected for pan‐Amazonian taxa or for mate‐recognition traits. Divergence in coloration appeared uncorrelated with genetic distance, and might be partly attributed to local selective pressures, and perhaps to Batesian mimicry. Divergence in body‐shape traits was low. The results obtained depict a complex evolutionary scenario and emphasize the importance of considering multiple traits when disentangling the forces behind allopatric divergence. ©2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 826–838.  相似文献   

9.
Genitalia are among the most variable of morphological traits, and recent research suggests that this variability may be the result of sexual selection. For example, large bacula may undergo post‐copulatory selection by females as a signal of male size and age. This should lead to positive allometry in baculum size. In addition to hyperallometry, sexually selected traits that undergo strong directional selection should exhibit high phenotypic variation. Nonetheless, in species in which pre‐copulatory selection predominates over post‐copulatory selection (such as those with male‐biased sexual size dimorphism), baculum allometry may be isometric or exhibit negative allometry. We tested this hypothesis using data collected from two highly dimorphic species of the Mustelidae, the American marten (Martes americana) and the fisher (Martes pennanti). Allometric relationships were weak, with only 4.5–10.1% of the variation in baculum length explained by body length. Because of this weak relationship, there was a large discrepancy in slope estimates derived from ordinary least squares and reduced major axis regression models. We conclude that stabilizing selection rather than sexual selection is the evolutionary force shaping variation in baculum length because allometric slopes were less than one (using the ordinary least squares regression model), a very low proportion of variance in baculum length was explained by body length, and there was low phenotypic variability in baculum length relative to other traits. We hypothesize that this pattern occurs because post‐copulatory selection plays a smaller role than pre‐copulatory selection (manifested as male‐biased sexual size dimorphism). We suggest a broader analysis of baculum allometry and sexual size dimorphism in the Mustelidae, and other taxonomic groups, coupled with a comparative analysis and with phylogenetic contrasts to test our hypothesis. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 955–963.  相似文献   

10.
There has been recent debate about the expected allometry of sexually‐selected traits. Although sexually‐selected traits exhibit a diversity of allometric patterns, signalling characters are frequently positively allometric. By contrast, insect genitalia tend to be negatively allometric, although the allometry of nongenital sexually‐selected characters in insects is largely unknown (with some notable exceptions). It has also been suggested that there should be a negative association between the asymmetry and size of bilaterally‐paired, sexually‐selected traits, although this claim is controversial. We assessed the allometry and asymmetry (fluctuating asymmetry, FA) of a nongenital contact–courtship structure, the sex comb, in replicate populations of three species of Drosophila (we also measured wing FA). Sex combs are sexually‐selected characters used to grasp the female's abdomen and genitalia and to spread her wings prior to and during copulation. Although species differed in the size of the sex combs, all combs were positively allometric, and comb allometry did not generally differ significantly between species or populations. Comb and wing asymmetry did vary across species, although not across populations of the same species. However, FA was trait specific and was never negatively associated with trait size. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 923–934.  相似文献   

11.
Natural populations of widely‐distributed animals often exhibit clinal variation in phenotypic traits or in allele frequencies of a particular gene over their geographical range. A planktotrophic intertidal snail, Littorina keenae is broadly distributed along the north‐eastern Pacific coast through a large latitudinal range (24°50′N–43°18′N). We tested for latitudinal clines in two complex phenotypic traits – thermal tolerance and body size – and one single locus trait – heat shock cognate 70 (HSC70) – in L. keenae along almost its entire geographical range. We found only weak evidence for a latitudinal cline in the thermal tolerance and no evidence for a cline in allele frequencies at HSC70. However, as predicted by Bergmann's rule, we detected a strong latitudinal cline that accounted for 60% of the variance in body size (R2 = 0.598; P < 0.001). In contrast, body size did not significantly affect thermal tolerance. HSC70 showed no genetic differentiation among the populations, supporting our previous mitochondrial gene‐based estimate of high gene flow during this snail's free‐swimming larval stage. Given that L. keenae experiences panmixia along its species range, the observed size cline may be partially or entirely caused by a phenotypically plastic response to local thermal environments rather than by genetic divergence in body size among populations in response to locally optimizing natural selection. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 494–505.  相似文献   

12.
Genotype‐by‐environment interactions (G × Es) describe genetic variation for phenotypic plasticity. Recent interest in the role of these interactions in sexual selection has identified G × Es across a diverse range of species and sexual traits. Additionally, theoretical work predicts that G × Es in sexual traits could help to maintain genetic variation, but could also disrupt the reliability of these traits as signals of mate quality. However, empirical tests of these theoretical predictions are scarce. We reared iso‐female lines of Drosophila simulans across two axes of environmental variation (diet and temperature) in a fully factorial design and tested for G × Es in the expression of cuticular hydrocarbons (CHCs), a multivariate sexual trait in this species. We find sex‐specific environmental, genetic and G × E effects on CHC expression, with G × Es for diet in both male and female CHC profile and a G × E for temperature in females. We also find some evidence for ecological crossover in these G × Es, and by quantifying variance components, genetic correlations and heritabilities, we show the potential for these G × Es to help maintain genetic variation and cause sexual signal unreliability in D. simulans CHC profiles.  相似文献   

13.
The lek paradox arises when choosy females deplete the genetic variance for male display traits from a population, yet substantial additive genetic variation (VA) in male traits persists. Thus, the lek paradox can be more generally stated as one of the most fundamental evolutionary questions: What maintains genetic variation in natural populations? One solution to this problem may be found in the condition‐dependent nature of many sexually selected traits. Genotype × environment (G × E) interactions can maintain VA under conditions of environmental heterogeneity provided certain restrictions are met, although antagonistic pleiotropy has also been proposed as a mechanism. Here, we provide evidence for G × E interactions and against the role of antagonistic pleiotropy in the maintenance of VA for sexually selected traits. Using inbred lines of the lesser waxmoth Achroia grisella, we measured VA for song attractiveness, condition and development rate under different competitive environments and found that genotypes differed in their plasticity. We argue that variation persists in natural populations because G × E interactions prevent any one variant from producing the optimal phenotype across all environments.  相似文献   

14.
The male genitalia of arthropods consistently show negative static allometry (the genitalia of small males of a species are disproportionally large, and those of large males are disproportionally small). We discuss relations between the ‘one‐size‐fits‐all’ hypothesis to explain this allometry and the regimes of selection that may be acting on genitalia. We focus on the contrasts between directional vs. stabilizing selection, and natural vs. sexual selection. In addition, we point out some common methodological problems in studies of genital allometry. One‐size‐fits‐all types of arguments for negative allometry imply net stabilizing selection, but the effects of stabilizing selection on allometry will be weaker when the correlation between body size and the trait size is weaker. One‐size‐fits‐all arguments can involve natural as well as sexual selection, and negative allometry can also result from directional selection. Several practical problems make direct tests of whether directional or stabilizing selection is acting difficult. One common methodological problem in previous studies has been concentration on absolute rather than relative values of the allometric slopes of genitalia; there are many reasons to doubt the usefulness of comparing absolute slopes with the usual reference value of 1.00. Another problem has been the failure to recognize that size and shape are independent traits of genitalia; rapid divergence in the shape of genitalia is thus not paradoxical with respect to the reduced variation in their sizes that is commonly associated with negative allometric scaling.  相似文献   

15.
Habitat‐associated trait divergence may vary across ontogeny if there are strong size‐related shifts in selection pressures. We quantified patterns of phenotypic divergence in Nile perch (Lates niloticus) from ecologically distinct wetland edge and forest edge habitats in Lake Nabugabo, Uganda, and we compared patterns of divergence across three size classes to determine whether trends are consistent through Nile perch ontogeny. We predicted that inter‐habitat variation in biotic (e.g. vegetation structure) and abiotic (e.g. dissolved oxygen concentration) variables may create divergent selective regimes. We compared body morphology using geometric morphometrics and found substantial differences between habitats, although not all trends were consistent across size classes. The most striking aspects of divergence in small Nile perch were in mouth orientation, head size, and development of the caudal region. Medium‐sized Nile perch also showed differences in mouth orientation. Differences in large individuals were related to eye size and orientation, as well as caudal length. The observed patterns of divergence are consistent with functional morphological predictions for fish across divergent trophic regimes, high and low predation environments, and complex and simple habitats. Although this suggests adaptive divergence, the source of phenotypic variation is unknown and may reflect phenotypic plasticity and/or genetic differences. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 449–465.  相似文献   

16.
Male genitalia are among the most phenotypically diverse morphological traits, and sexual selection is widely accepted as being responsible for their evolutionary divergence. Studies of house mice suggest that the shape of the baculum (penis bone) affects male reproductive fitness and experimentally imposed postmating sexual selection has been shown to drive divergence in baculum shape across generations. Much less is known of the morphology of female genitalia and its coevolution with male genitalia. In light of this, we used a paternal half-sibling design to explore patterns of additive genetic variation and covariation underlying baculum shape and female vaginal tract size in house mice (Mus musculus domesticus). We applied a landmark-based morphometrics approach to measure baculum size and shape in males and the length of the vaginal tract and width of the cervix in females. Our results reveal significant additive genetic variation in house mouse baculum morphology and cervix width, as well as evidence for genetic covariation between male and female genital measures. Our data thereby provide novel insight into the potential for the coevolutionary divergence of male and female genital traits in a mammal.  相似文献   

17.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

18.
Phenotypic plasticity is important in the evolution of traits and facilitates adaptation to rapid environmental changes. However, variation in plasticity at the individual level, and the heritable basis underlying this plasticity is rarely quantified for behavioral traits. Alternative behavioral reproductive tactics are key components of mating systems but are not often considered within a phenotypic plasticity framework (i.e., as reaction norms). Here, using lines artificially selected for repeated mating rate, we test for genetic (G × E) sources of variation in reproductive behavior of male Nicrophorus vespilloides burying beetles (including signaling behavior), as well as the role of individual body size, in responsiveness to changes in social environment. The results show that body size influences the response of individuals’ signaling behavior to changes in the social environment. Moreover, there was G × E underlying the responses of males to variation in the quality of social environment experienced (relative size of focal male compared to his rival). This shows that individual variation in plasticity and social sensitivity of signaling behavior can evolve in response to selection on investment in mating behavior, with males selected for high mating investment having greater social sensitivity.  相似文献   

19.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

20.
The mobility hypothesis could explain the evolution of female‐biased size dimorphism if males with a smaller body size and longer legs have an advantage in scramble competition for mates. This hypothesis is tested by performing a selection analysis in the wild on Micrarchus hystriculeus (Westwood) (Phasmatodea), a sexually size dimorphic stick insect endemic to New Zealand. This analysis examined the form and strength of sexual selection on body size, leg lengths (front, mid and hind), and clasper size (a genitalic trait), and also quantified the degree of phenotypic variation and the allometric scaling pattern of these traits. By contrast to the mobility hypothesis, three lines of evidence were found to support significant stabilizing sexual selection on male hind leg length: a significant nonlinear selection gradient, negative static allometry, and a low degree of phenotypic variation. Hind leg length might be under stabilizing selection in males if having average‐sized legs facilitates female mounting or improves a male's ability to achieve the appropriate copulation position. As predicted, a negative allometric scaling pattern and low phenotypic variation of clasper size is suggestive of stabilizing selection and supports the ‘one‐size‐fits‐all’ hypothesis. Opposite to males, the mid and hind leg lengths of females showed positive static allometry. Relatively longer mid and hind leg lengths in larger females might benefit individuals via the better support of their larger abdomens. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 471–484.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号