首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The delivery of mannose 6-phosphate receptors carrying lysosomal hydrolases from the trans-Golgi network (TGN) to the endosomal system is mediated by selective incorporation of the receptor-hydrolase complexes into vesicular transport carriers (TCs) that are coated with clathrin and the adaptor proteins, GGA and AP-1. Previous electron microscopy (EM) and biochemical studies have shown that these TCs consist of spherical coated vesicles with a diameter of 60-100 nm. The use of fluorescent live cell imaging, however, has revealed that at least some of this transport relies on a subset of apparently larger and highly pleiomorphic carriers that detach from the TGN and translocate toward the peripheral cytoplasm until they meet with distally located endosomes. The ultrastructure of such long-range TCs has remained obscure because of the inability to examine by conventional EM the morphological details of rapidly moving organelles. The recent development of correlative light-EM has now allowed us to obtain ultrastructural 'snapshots' of these TCs immediately after their formation from the TGN in live cells. This approach has revealed that such carriers range from typical 60- to 100-nm clathrin-coated vesicles to larger, convoluted tubular-vesicular structures displaying several coated buds. We propose that this subset of TCs serve as vehicles for long-range distribution of biosynthetic or recycling cargo from the TGN to the peripheral endosomes.  相似文献   

2.
Hepatocytes, the main epithelial cells of the liver, organize their polarized membrane domains differently from ductal epithelia. They also differ in their biosynthetic delivery of single‐membrane‐spanning and glycophosphatidylinositol‐anchored proteins to the apical domain. While ductal epithelia target apical proteins to varying degrees from the trans‐Golgi network (TGN) to the apical surface directly, hepatocytes target them first to the basolateral domain, from where they undergo basolateral‐to‐apical transcytosis. How TGN‐to‐surface transport differs in both scenarios is unknown. Here, we report that the basolateral detour of a hepatocyte apical protein is due, in part, to low RhoA activity at the TGN, which prevents its segregation from basolateral transport carriers. Activating Rho in hepatocytic cells, which switches their polarity from hepatocytic to ductal, also led to apical‐basolateral cargo segregation at the TGN as is typical for ductal cells, affirming a central role for Rho‐signaling in different aspects of the hepatocytic polarity phenotype. Nevertheless, Rho‐induced cargo segregation was not sufficient to target the apical protein directly; thus, failure to recruit apical targeting machinery also contributes to its indirect itinerary.  相似文献   

3.
Pep12p is a yeast syntaxin located primarily in late endosomes. Using mutagenesis of a green fluorescent protein chimera we have identified a sorting signal FSDSPEF, which is required for transport of Pep12p from the exocytic pathway to late endosomes, from which it can, when overexpressed, reach the vacuole. When this signal is mutated, Pep12p instead passes to early endosomes, a step that is determined by its transmembrane domain. Surprisingly, Pep12p is then specifically retained in early endosomes and does not go on to late endosomes.By testing appropriate chimeras in mutant strains, we found that FSDSPEF-dependent sorting was abolished in strains lacking Gga1p and Gga2p, Golgi-associated coat proteins with homology to gamma adaptin. In the gga1 gga2 double mutant endogenous Pep12p cofractionated with the early endosome marker Tlg1p, and recycling of Snc1p through early endosomes was defective. Pep12p sorting was also defective in cells lacking the clathrin heavy or light chain. We suggest that specific and direct delivery of proteins to early and late endosomes is required to maintain the functional heterogeneity of the endocytic pathway and that the GGA proteins, probably in association with clathrin, help create vesicles destined for late endosomes.  相似文献   

4.
E-cadherin is a cell-cell adhesion protein that is trafficked and delivered to the basolateral cell surface. Membrane-bound carriers for the post-Golgi exocytosis of E-cadherin have not been characterized. Green fluorescent protein (GFP)-tagged E-cadherin (Ecad-GFP) is transported from the trans-Golgi network (TGN) to the recycling endosome on its way to the cell surface in tubulovesicular carriers that resemble TGN tubules labeled by members of the golgin family of tethering proteins. Here, we examine the association of golgins with tubular carriers containing E-cadherin as cargo. Fluorescent GRIP domains from golgin proteins replicate the membrane binding of the full-length proteins and were coexpressed with Ecad-GFP. The GRIP domains of p230/golgin-245 and golgin-97 had overlapping but nonidentical distributions on the TGN; both domains were on TGN-derived tubules but only the golgin-97 GRIP domain coincided with Ecad-GFP tubules in live cells. When the Arl1-binding endogenous golgins, p230/golgin-245 and golgin-97 were displaced from Golgi membranes by overexpression of the p230 GRIP domain, trafficking of Ecad-GFP was inhibited. siRNA knockdown of golgin-97 also inhibited trafficking of Ecad-GFP. Thus, the GRIP domains of p230/golgin-245 and golgin-97 bind discriminately to distinct membrane subdomains of the TGN. Golgin-97 is identified as a selective and essential component of the tubulovesicular carriers transporting E-cadherin out of the TGN.  相似文献   

5.
Diacylglycerol (DAG) is required for membrane traffic and structural organization at the Golgi. DAG is a lipid metabolite of several enzymatic reactions present at this organelle, but the mechanisms by which they are regulated are still unknown. Here, we show that cargo arrival at the Golgi increases the recruitment of the DAG‐sensing constructs C1‐PKCθ‐GFP and the PKD‐wt‐GFP. The recruitment of both constructs was reduced by PLCγ1 silencing. Post‐Golgi trafficking of transmembrane and soluble proteins was impaired in PLCγ1‐silenced cells. Under basal conditions, PLCγ1 contributed to the maintenance of the pool of DAG associated with the Golgi and to the structural organization of the organelle. Finally, we show that cytosolic phospholipase C (PLC) can hydrolyse phosphatidylinositol 4‐phosphate in isolated Golgi membranes. Our results indicate that PLCγ1 is part of the molecular mechanism that couples cargo arrival at the Golgi with DAG production to co‐ordinate the formation of transport carriers for post‐Golgi traffic.   相似文献   

6.
Monensin and brefeldin A (BFA), inhibitors of Golgi-mediated protein secretion, rapidly perturb the transport catalytic activity of specific plasma membrane-associated efflux carriers for indole-3-acetic acid (IAA) and inhibit polar transport of IAA. To determine if these responses result solely from perturbation of the efflux carrier or whether specific auxin uptake carrier function is also affected, the influence of BFA on the cellular transport of a range of auxins with contrasting affinities for specific auxin uptake and efflux carriers was investigated in zucchini (Cucurbita pepo L.) hypocotyl tissue. In-flight addition of BFA (3 · 10−5 mol · dm−3) caused a rapid (lag < 10 min) and substantial (fourfold) increase in the rate of [1-14C]IAA net uptake by zucchini hypocotyl tissue. In the presence of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA; 3 · 10−6 mol · dm−3), BFA slightly reduced the rate of [1-14C]IAA net uptake. Stimulation of [1-14C]IAA net uptake by BFA was concentration-dependent. In the absence of BFA, net uptake of [1-14C]IAA exhibited the characteristic biphasic response to increasing concentrations of competing cold IAA but in the presence of BFA, [1-14C]IAA uptake decreased smoothly with increase in concentration of competing unlabelled IAA, indicating a loss of auxin efflux carrier activity but retention of functional uptake carriers. The half-time for mediated efflux of [1-14C]IAA from preloaded zucchini tissue was substantially increased by BFA (t1/2 = 51 min, controls; 107 min, BFA-treated). Treatment with BFA and/or NPA did not significantly affect the net uptake by, or efflux from, zucchini tissue of [1-14C]2,4-dichlorophenoxyacetic acid ([1-14C]2,4-D), a substrate for the auxin uptake carrier but not the auxin efflux carrier. Uptake of [1-14C]2,4-D declined smoothly with increasing concentrations of competing unlabelled IAA whether or not BFA was included in the uptake medium, confirming the failure of BFA to perturb auxin uptake carrier function. Transport of 1-[4-3H]naphthaleneacetic acid (1-NAA) exhibited little response to BFA or NPA, confirming that it is only a weakly transported substrate for the efflux carrier in zucchini cells. Received: 12 November 1997 / Accepted: 27 January 1998  相似文献   

7.
Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH2-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.  相似文献   

8.
The protein kinase CK2 is composed of two catalytic - or - and two regulatory -subunits. In mammalian cells there is ample evidence for the presence of individual CK2 subunits beside the holoenzyme. By immunofluorescence studies using peptide antibodies which allow us to detect the CK2-, - and -subunits we found all three subunits to be co-localized with a 58 KDa Golgi protein which is specific for the Golgi complex. Subfractionation studies using dog pancreas cells revealed the presence of all three subunits of CK2 at the smooth endoplasmic reticulum (sER)/Golgi fraction whereas the rough endoplasmic reticulum (rER) harboured only the catalytic - and -subunits. We found that the microsomal preparation from dog pancreas cells contained CK2 which phosphorylated a CK2 specific synthetic peptide and which was heparin sensitive. Furthermore, we could immunoprecipitate the CK2-subunit that exhibited a kinase activity which phosphorylated a CK2 specific substrate and which was heparin sensitive. Protease digestion experiments revealed that the CK2 subunits were located on the cytosolic side of the rER and the sER/Golgi complex. Thus, we could demonstrate an asymmetric distribution of the CK2 subunits at the rER and sER/Golgi complex. Since the CK2- and -subunits exhibit a substrate specificity which is different from the CK2 holoenzyme one might speculate that the asymmetric distribution of the CK2 holoenzyme and the CK2 catalytic subunits may have regulatory functions.  相似文献   

9.
We have measured the transport of de novo synthesized fluorescent analogs of sphingomyelin and glucosylceramide from the trans-Golgi network (TGN) to the apical membrane in basolaterally permeabilized Madin-Darby canine kidney (MDCK) cells. Sphingolipid transport was temperature, ATP and cytosol dependent. Introduction of bovine serum albumin (BSA), which binds fluorescent sphingolipid monomer, into the permeabilized cells, did not affect lipid transport to the apical membrane. Both fluorescent sphingomyelin and glucosylceramide analogs were localized to the lumenal bilayer leaflet of isolated TGN-derived vesicles. These results strongly suggest that both sphingolipids are transported from the TGN to the apical membrane via vesicular traffic.  相似文献   

10.
Efficient post-Golgi trafficking depends on microtubules, but actin filaments and actin-associated proteins are also postulated. Here we examined, by inverse fluorescence recovery after photobleaching, the role of actin dynamics in the exit from the TGN of fluorescent-tagged apical or basolateral and raft or non-raft-associated cargoes. Either the actin-stabilizing jasplakinolide or the actin-depolymerising latrunculin B variably but significantly inhibited post-Golgi traffic of non-raft associated apical p75NTR and basolateral VSV-G cargoes. The TGN-exit of the apical-destined VSV-G mutant was impaired only by latrunculin B. Strikingly, the raft-associated GPI-anchor protein was not affected by either actin toxin. Results indicate that actin dynamics participates in the TGN egress of both apical- and basolateral-targeted proteins but is not needed for apical raft-associated cargo.  相似文献   

11.
Suzanne R. Pfeffer 《FEBS letters》2009,583(23):3811-913
Proteins use multiple routes for transport from endosomes to the Golgi complex. Shiga and cholera toxins and TGN38/46 are routed from early and recycling endosomes, while mannose 6-phosphate receptors are routed from late endosomes. The identification of distinct molecular requirements for each of these pathways makes it clear that mammalian cells have evolved more complex targeting mechanisms and routes than previously anticipated.  相似文献   

12.
The morphology and subcellular positioning of the Golgi complex depend on both microtubule and actin cytoskeletons. In contrast to microtubules, the role of actin cytoskeleton in the secretory pathway in mammalian cells has not been clearly established. Using cytochalasin D, we have previously shown that microfilaments are not involved in the endoplasmic reticulum–Golgi membrane dynamics. However, it has been reported that, unlike botulinum C2 toxin and latrunculins, cytochalasin D does not produce net depolymerization of actin filaments. Therefore, we have reassessed the functional role of actin microfilaments in the early steps of the biosynthetic pathway using C2 toxin and latrunculin B. The anterograde endoplasmic reticulum-to-Golgi transport monitored with the vesicular stomatitis virus-G protein remained unaltered in cells treated with cytochalasin D, latrunculin B or C2 toxin. Conversely, the brefeldin A-induced Golgi membrane fusion into the endoplasmic reticulum, the Golgi-to-endoplasmic reticulum transport of a Shiga toxin mutant form, and the subcellular distribution of the KDEL receptor were all impaired when actin microfilaments were depolymerized by latrunculin B or C2 toxin. These findings, together with the fact that COPI-coated and uncoated vesicles contain β/γ-actin isoforms, indicate that actin microfilaments are involved in the endoplasmic reticulum/Golgi interface, facilitating the retrograde Golgi-to-endoplasmic reticulum membrane transport, which could be mediated by the orchestrated movement of transport intermediates along microtubule and microfilament tracks.  相似文献   

13.
A fibroblast mutant cell line lacking the Na+/H+ antiporter was used to study the influence of low cytoplasmic pH on membrane transport in the endocytic and exocytic pathways. After being loaded with protons, the mutant cells were acidified at pH 6.2 to 6.8 for 20 min while the parent cells regulated their pH within 1 min. Cytoplasmic acidification did not affect the level of intracellular ATP or the number of clathrin-coated pits at the cell surface. However, cytosolic acidification below pH 6.8 blocked the uptake of two fluid phase markers, Lucifer Yellow and horseradish peroxidase, as well as the internalization and the recycling of transferrin. When the cytoplasmic pH was reversed to physiological values, both fluid phase endocytosis and receptor-mediated endocytosis resumed with identical kinetics. Low cytoplasmic pH also inhibited the rate of intracellular transport from the Golgi complex to the plasma membrane. This was shown in cells infected by the temperature-sensitive mutant ts 045 of the vesicular stomatitis virus (VSV) using as a marker of transport the mutated viral membrane glycoprotein (VSV-G protein). The VSV-G protein was accumulated in the trans-Golgi network (TGN) by an incubation at 19.5 degrees C and was transported to the cell surface upon shifting the temperature to 31 degrees C. This transport was arrested in acidified cells maintained at low cytosolic pH and resumed during the recovery phase of the cytosolic pH. Electron microscopy performed on epon and cryo-sections of mutant cells acidified below pH 6.8 showed that the VSV-G protein was present in the TGN. These results indicate that acidification of the cytosol to a pH less than 6.8 inhibits reversibly membrane transport in both endocytic and exocytic pathways. In all likelihood, the clathrin and nonclathrin coated vesicles that are involved in endo- and exocytosis cannot pinch off from the cell surface or from the TGN below this critical value of internal pH.  相似文献   

14.
Transport vesicles or containers (TCs) mediate constitutive protein transport between the trans-Golgi network (TGN) and the plasma membrane. A key question is the nature and regulation of these transport containers or intermediates. We have used a trans-Golgi network resident, TGN38, to investigate TC formation. TGN38 is a recycling membrane glycoprotein that moves to the cell surface via constitutive membrane traffic and returns via the endosomal pathway. An in vitro assay to measure TC formation was devised using rat liver Golgi membranes, cytosolic factors and ATP. Transport intermediates containing TGN38 were produced and found to be smooth vesicles and tubules of up to 200 nm in length. These membrane-enclosed structures contain different constitutively secreted membrane glycoproteins, including molecules involved in immune functions such as MHC Class I and the polymeric Ig receptor, showing that these intermediates correspond to TCs that have been previously identified in vivo. Importantly, TC formation can be stimulated or inhibited by protein kinase and phosphatase inhibitors, showing regulation by intracellular signalling pathways.  相似文献   

15.
We have developed a reconstituted model system to study the interaction of the Golgi membranes isolated from rabbit liver with taxol-stabilized bovine-brain microtubules without microtubule-associated proteins (MAPs). The Golgi membranes are associated with microtubules. The sheets of vesicles and the membranous tubules are observed along microtubules by direct visualization using differential-interference-contrast, dark field, or fluorescence microscopy. The monoclonal antibody against Golgi membranes suggests that the Golgi membranes, but not the contaminating vesicles, are interacting with microtubules. The degree of association is assayed quantitatively using rhodamine-labeled microtubules after separation of the complex from unbound microtubules by centrifugation upon sucrose gradient. The association is inhibited by crude MAPs, purified MAP2, or 1.0 mM ATP. However, the association neither requires the cytosol from rat liver or bovine brain nor N-ethylmaleimide, brefeldin A, or GTP-gamma-S. The association is mediated by trypsin-sensitive peripheral protein(s) on the Golgi membranes.  相似文献   

16.
The down-regulation of surface expression of MHC class I molecules has recently been reported in the CD99-deficient lymphoblastoid B cell line displaying the characteristics of Hodgkin's and Reed-Sternberg phenotype. Here, we demonstrate that the reduction of MHC class I molecules on the cell surface is primarily due to a defect in the transport from the Golgi complex to the plasma membrane. Loss of CD99 did not affect the steady-state expression levels of mRNA and protein of MHC class I molecules. In addition, the assembly of MHC class I molecules and the transport from the endoplasmic reticulum to the cis-Golgi occurred normally in the CD99-deficient cells, and no difference was detected between the CD99-deficient and the control cells in the pattern and degree of endocytosis. Instead, the CD99-deficient cells displayed the delayed transport of newly synthesized MHC class I molecules to the plasma membrane, thus causing accumulation of the molecules within the cells. The accumulated MHC class I molecules in the CD99-deficient cells were colocalized with alpha-mannosidase II and gamma-adaptin in the Golgi compartment. These results suggest that CD99 may be associated with the post-Golgi trafficking machinery by regulating the transport to the plasma membrane rather than the endocytosis of surface MHC class I molecules, providing a novel mechanism of MHC class I down-regulation for immune escape.  相似文献   

17.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

18.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic protein with energy production as its implied occupation. It has established itself lately as a multifunctional protein. Recent studies have found GAPDH to be involved in a variety of nuclear and cytosolic pathways ranging from its role in apoptosis and regulation of gene expression to its involvement in regulation of Ca2+ influx from endoplasmic reticulum. Numerous studies also indicate that GAPDH interacts with microtubules and participates in cell membrane fusion. This review is focused on the cytosolic functions of the protein related to vesicular transport. Suggestions for future directions as well as the model of protein polymer structure and possible post-translational modifications as a basis for its multifunctional activities in the early secretory pathway are given.  相似文献   

19.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone α-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369–377). Retrieval depends on the HDEL sequence; the α-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

20.
Protein transport in plant cells: in and out of the Golgi   总被引:7,自引:0,他引:7  
In plant cells, the Golgi apparatus is the key organelle for polysaccharide and glycolipid synthesis, protein glycosylation and protein sorting towards various cellular compartments. Protein import from the endoplasmic reticulum (ER) is a highly dynamic process, and new data suggest that transport, at least of soluble proteins, occurs via bulk flow. In this Botanical Briefing, we review the latest data on ER/Golgi inter-relations and the models for transport between the two organelles. Whether vesicles are involved in this transport event or if direct ER-Golgi connections exist are questions that are open to discussion. Whereas the majority of proteins pass through the Golgi on their way to other cell destinations, either by vesicular shuttles or through maturation of cisternae from the cis- to the trans-face, a number of membrane proteins reside in the different Golgi cisternae. Experimental evidence suggests that the length of the transmembrane domain is of crucial importance for the retention of proteins within the Golgi. In non-dividing cells, protein transport out of the Golgi is either directed towards the plasma membrane/cell wall (secretion) or to the vacuolar system. The latter comprises the lytic vacuole and protein storage vacuoles. In general, transport to either of these from the Golgi depends on different sorting signals and receptors and is mediated by clathrin-coated and dense vesicles, respectively. Being at the heart of the secretory pathway, the Golgi (transiently) accommodates regulatory proteins of secretion (e.g. SNAREs and small GTPases), of which many have been cloned in plants over the last decade. In this context, we present a list of regulatory proteins, along with structural and processing proteins, that have been located to the Golgi and the 'trans-Golgi network' by microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号