首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Members of tumour necrosis factor (TNF) family usually trigger both survival and apoptotic signals in various cell types. Heat shock proteins (HSPs) are conserved proteins implicated in protection of cells from stress stimuli. However, the mechanisms of HSPs in TNFα‐induced signalling pathway have not been fully elucidated. We report here that HSP70 over‐expression in human colon cancer cells can inhibit TNFα‐induced NFκB activation but promote TNFα‐induced activation of c‐Jun N‐terminal kinase (JNK) through interaction with TNF receptor (TNFR)‐associated factor 2 (TRAF2). We provide evidence that HSP70 over‐expression can sequester TRAF2 in detergent‐soluble fractions possibly through interacting with TRAF2, leading to reduced recruitment of receptor‐interacting protein (RIP1) and IκBα kinase (IKK) signalosome to the TNFR1–TRADD complex and inhibited NFκB activation after TNFα stimuli. In addition, we found that HSP70–TRAF2 interaction can promote TNFα‐induced JNK activation. Therefore, our study suggests that HSP70 may differentially regulate TNFα‐induced activation of NFκB and JNK through interaction with TRAF2, contributing to the pro‐apoptotic roles of HSP70 in TNFα‐induced apoptosis of human colon cancer cells.  相似文献   

4.
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.  相似文献   

5.
6.
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.  相似文献   

7.
8.
9.
10.
11.
12.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
16.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

17.
18.
Engelhardia roxburghiana Wall . leaves are widely used to develop herbal teas in southeast of China due to medicinal use for diabetes mellitus and hyperlipidemia. Studies have demonstrated that the total flavonoids of E. roxburghiana leaves (TFER) exhibited regulatory effects on blood glucose and lipids. To clarify the active ingredients of TFER and their targets in treating atherosclerosis, the present study integrated chemical analysis, network pharmacology analysis and animal experimental studies. Firstly, high performance liquid chromatography‐mass spectrometry/mass spectrometry (HPLC/MS/MS) was utilized to identify components of TFER. Then, active ingredients were screened by oral bioavailability (OB) and drug‐likeness (DL) index. Thirdly, network was constructed to predict major targets of active ingredients against atherosclerosis. Finally, to verify parts of predicted signaling, Apoe?/? mice were used to develop atherosclerosis. Atherosclerotic plaques in aorta were evaluated by echocardiography. Then, serum lipids, target genes expressions in thoracic aorta were determined by qRT‐PCR and ELISA methods. Chemical analysis revealed 10 components in TFER sample, 7 of which acted as active ingredients, including naringenin, kaempferol, quercetin, isoengeletin, engeletin, astilbin and quercitrin. KEGG pathway analysis highly enriched in some inflammatory signalings, including NF‐κB signaling, Toll‐like receptor signaling and TNF signaling. The animal studies indicated that TFER reduced atherosclerotic plaques size in aorta and significantly decreased the serum lipids, down‐regulated NF‐κB signaling by decreasing mRNA level of NF‐κB p65 subunit, TNF‐α and VCAM‐1, as well as IL‐1β expressions in thoracic aorta, eventually alleviating atherosclerosis progression, which was in consistent with our prediction.  相似文献   

19.
Human NDR1/STK38 belongs to the nuclear‐Dbf2‐related (NDR) family of Ser/Thr kinases. It has been implicated to function in centrosome duplication, control of cell cycle and apoptosis. However, the mechanism of NDR1 signaling pathway remains largely elusive. Here, we report a novel role of NDR1 in NF‐κB activation. By overexpression, NDR1 potentiates NF‐κB activation induced by TNFα, whereas knockdown of NDR1 expression inhibits NF‐κB activation induced by TNFα. Coimmunoprecipitation shows that NDR1 interacts with multiple signal components except p65 in NF‐κB signaling pathway. Furthermore, both phosphorylation and kinase dead mutants of NDR1 lose their synergistic effects on TNFα‐induced NF‐κB activation. siRNA oligo against NDR1 and kinase dead mutant as well mainly block the NF‐κB activation induced by TRAF2 but not RIP1. Furthermore, kinase dead mutant of NDR1 fails to interact with TRAF2. Taken together, our findings suggest an unknown function of NDR1, which may regulate NF‐κB activation by its kinase activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Metastatic melanomas are typically resistant to radiation and chemotherapy. The underlying basis for this phenomenon may result in part from defects in apoptotic pathways. Nuclear factor kappa B (NFκB) has been shown to control apoptosis in many cell types and normally functions as an immediate stress response mechanism that is rigorously controlled by multiple inhibitory complexes. We have previously shown that NFκB binding is elevated in metastatic melanoma cells relative to normal melanocytes. In the current study, Western blot analysis showed that, compared with normal melanocytes, melanoma cell lines have higher nuclear levels of the NFκB subunits p50 (7‐fold) and RelA (5–10‐fold). In response to tumor necrosis factor‐alpha (TNFα), both melanocytes and melanoma cells showed increased nuclear p50 and RelA levels, but levels in melanoma cells remained higher than in melanocytes. We also found that melanoma cells expressed higher cytoplasmic levels of RelA, p105/p50 and the inhibitory protein, inhibitor of kappa B alpha (IκBα) than melanocytes. To directly test whether RelA expression has an impact on melanoma cell survival, we used antisense RelA phosphorothioate oligonucleotides and found that melanoma cell viability was significantly decreased compared with untreated or control cultures. The constitutive activation of NFκB in metastatic melanoma cell cultures may, therefore, support an inappropriate cell survival pathway that can be therapeutically manipulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号