首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

2.
Macroevolutionary patterns of sexual size dimorphism (SSD) indicate how sexual selection, natural selection, and genetic and developmental constraints mold sex differences in body size. One putative pattern, known as Rensch's rule, posits that, among species with female‐larger SSD, the relative degree of SSD declines with species' body size, whereas, among male‐larger SSD species, relative SSD increases with size. Using a dataset of 196 chelonian species from all fourteen families, we investigated the correlation in body size evolution between male and female Chelonia and the validity of Rensch's rule for the taxon and within its major clades. We conclude that male–female correlations in body size evolution are high, although these correlations differ among chelonian families. Overall, SSD scales isometrically with body size; Rensch's rule is valid for only one family, Testudinidae (tortoises). Because macroevolutionary patterns of SSD can vary markedly among clades, even in a taxon as morphologically conservative as Testudines, one must guard against inappropriately pooling clades in comparative studies of SSD. The results of the present study also indicate that regression models that assume the x‐variable (e.g. male body size) is measured without statistical error, although frequently reported, will result in erroneous conclusions about phylogenetic trends in sexual size dimorphism. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 396–413.  相似文献   

3.
The eyes of stalk‐eyed flies (Diopsidae) are positioned at the end of rigid peduncles (‘stalks’) protruding laterally from the head. Eye‐stalk length varies within the family and, in some species, varies between males and females. Larger eye‐stalks in males result from sexual selection for longer stalks, a trait that increases male reproductive success. In the present study, we examined whether an increase in eye‐stalk length results in an adjustment of wing size and shape to deal with the burden of bearing an exaggerated ‘ornament’. We compared wing morphology among ten species of stalk‐eyed flies that differ in eye‐span and the degree of sexual dimorphism. Mass‐specific wing length differed between males and females in seven out of the ten species. Nondimensional wing shape parameters differed between the species (P < 0.001), but mostly did not differ between males and females of the same species. Dimorphism in eye‐span closely correlated with dimorphism in wing length (r = 0.89, P < 0.001) and the correlation remained significant (r = 0.81, P = 0.006) after correcting for phylogenetic relationships. Once corrected for phylogenetic relatedness, the mass‐specific wing length of males (but not females) was weakly correlated with mass‐specific eye‐span (r = 0.66, P = 0.042). We propose that the observed proportional increase in wing length associated with increased eye‐span can facilitate aerial manoeuverability, which would otherwise be handicapped by the elevated moment of inertia imposed by the wider head. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 860–871.  相似文献   

4.
Species of the Amazonian jumping spider genus Soesiladeepakius Makhan are confirmed as non‐salticoids. Sequences of nuclear (28S, Actin) and mitochondrial (16S through NADH dehydrogenase subunit I, ‘16S‐ND1’) gene regions, analysed under parsimony and maximum likelihood, placed the genus within the lapsiines, closely related to Galianora Maddison. Additionally, six new species of this genus are herein described, namely Soesiladeepakius lyra sp. nov. , Soesiladeepakius retroversus sp. nov. , Soesiladeepakius arthrostylus sp. nov. , Soesiladeepakius gasnieri sp. nov. , Soesiladeepakius biarmatus sp. nov. , and Soesiladeepakius uncinatus sp. nov. , all from the Amazon region in Brazil. To test the monophyly of Soesiladeepakius within lapsiines, a cladistic analysis was carried out using a data matrix comprising 24 morphological characters scored for 12 taxa. The analysis resulted in two equally parsimonious trees of 29 steps. One of these trees is used to discuss the relationships among the species of Soesiladeepakius and character evolution. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 274–295.  相似文献   

5.
Patterns of sexual size dimorphism (SSD) and cranial dimorphism are well documented. However, limited examinations exist of the contrasts in the patterns and nature of dimorphism across body regions (e.g. cranium, pelvis), particularly when these regions have different sex-specific functions (e.g. display in mating, locomotion, and reproduction). Using landmark-based morphometric techniques, we investigated size and shape dimorphism variation in the crania and pelves of two closely-related fox species within the genus Urocyon . Although we found no significant size and shape dimorphism in the crania of either species, we did find significant dimorphism in the pelvis: its size was dimorphic in Urocyon littoralis (but not in Urocyon cinereoargenteus ) and its shape was dimorphic in both species (though more pronounced in U. littoralis ). The observation of greater dimorphism in the pelvis than in the cranium suggests that factors such as offspring size and locomotor mode play a greater role in sexual dimorphism than simple 'whole body' allometric affects associated with dimorphism in body size.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 339–353.  相似文献   

6.
The condition‐dependent sexual dimorphism model explains the evolution and maintenance of sexual dimorphism in traits targeted by sexual selection, and predicts that the magnitude of sexual dimorphism depends on the variability of individual condition, male traits being more variable than female corresponding traits. Most convincing examples concern insects, while studies among vertebrates are scanty because manipulating condition often is not possible, and the time to reach sexual maturity may be too long. Islands offer a unique opportunity to compare how the environment affects the expression of sexual dimorphism, since they represent ‘natural experimental sets’ in which different populations of the same species may experience alternative environmental constraints. We investigated the occurrence of context‐dependent expression in sexual dimorphism of head shape in insular populations of the common wall lizards (Podarcis muralis) inhabiting the Tuscan Archipelago (Tyrrhenian Sea). Alternative models were formulated: H0 assumes that the sexual dimorphism is uninfluenced by islands, H1 assumes the only effect of phylogeny, H2A and H2B account for the biogeography of the archipelago (island size and distance from the mainland), while H3 assumes island‐specific effects on sexual dimorphism. Models were compared using Akaike's information criterion adjusted for multivariate analyses. All hypotheses performed better than H0, but H3 largely outperformed all other alternative hypotheses, indicating that environmental features of islands play an additive effect to ontogenetic, biogeographic and genetic factors in defining variation in head shape sexual dimorphism. Our results support the hypothesis of a context‐dependent sexual dimorphism in common wall lizards. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 552–565.  相似文献   

7.
The plumage coloration in great tits (Parus major) is the subject of much behavioural and ecophysiological research, yet there is a lack of analyses of the natural colour variation and its mechanisms. We used reflectance spectrometry and high‐performance liquid chromatography to explore individual, sexual and age‐related variation in carotenoid coloration and pigmentation, paramount to the often presumed, but rarely substantiated, costs and ‘honesty’ of carotenoid displays. In adults, we found that sex was the strongest predictor of ‘brightness’ (higher in males) and of ‘hue’ (longer wavelength in females). There was no sex difference in ‘carotenoid chroma’ or carotenoid content of feathers which also was unrelated to adult age (1 or 2+ years) and condition. Similar patterns were revealed for nestlings. Regarding the biochemical ‘signal content’, ‘carotenoid chroma’, but not ‘hue’, was significantly related to the carotenoid content (lutein and zeaxanthin) of feathers. These results refute the previously assumed exaggeration of carotenoid pigmentation in male great tits, and question the condition‐dependence of carotenoid coloration in this species. However, the sexual dimorphism in total reflectance or ‘brightness’, most likely due to melanins rather than carotenoids, may have implications for signalling or other adaptive explanations that need to be explored. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 758–765.  相似文献   

8.
Abstract

A new species of the neotropical electric fish genus Compsaraia is described from the western Amazon of Peru and Brazil. Compsaraia samueli is distinguishable from all other apteronotids by sexual dimorphism in which mature males exhibit extreme elongation and slenderness of the snout and jaws. Compsaraia samueli is readily distinguishable from its only congener, C. compsa, by more caudal‐fin rays (17–18 vs. 13–16), a shorter caudal peduncle (mean length 9% vs. 34% body length to end of anal fin), a less tapering body shape in lateral profile (mean ratio of body depth at origins of anal fin and dorsal organ 93% vs. 75%), and a smaller maximum adult body size (230 vs. 305 mm). The genus Compsaraia is readily separated from other apteronotids by a pale antorbital stripe and a pale L‐shaped patch over the supra‐temporal canal. The phylogenetic position of C. samueliis estimated by inclusion in a previously published data matrixof osteological and other morphological characters. Comparisons of the cranial bones in apteronotids shows the derived morphology of C. samueli to be a composite of three developmentally and phylogenetically discrete characters: (1) positive allometric growth before sexual maturity in both sexes of the pre‐orbital region of the neurocranium, (2) positive allometric growth of the (oral) jaws, and (3) secondary sexual dimorphism of snout and jaw morphology. The genus Compsaraia represents one of at least three phylogenetically independent cases of snout elongation and one of at least four cases of jaw elongation within the Apteronotidae. Compsaraia samueli also represents one of at least four cases of secondary sexual dimorphism in snout and jaw length within the Apteronotidae. The phylogenetic distribution of snout and jaw characters within the Apteronotidae suggests the influence of both sexual and trophic functional influences on the evolution of head morphology.  相似文献   

9.
Although differential selective pressures on males and females of the same species may result in sex‐specific evolutionary trajectories, comparative studies of adaptive radiations have largely neglected within‐species variation. In this study, we explore the potential effects of natural selection, sexual selection, or a combination of both, on bite performance in males and females of 19 species of Liolaemus lizards. More specifically, we study the evolution of bite performance, and compare evolutionary relationships between the variation in head morphology, bite performance, ecological variation and sexual dimorphism between males and females. Our results suggest that in male Liolaemus, the variation in bite force is at least partly explained by the variation in the degree of sexual dimorphism in head width (i.e. our estimate of the intensity of sexual selection), and neither bite force nor the morphological variables were correlated with diet (i.e. our proxy for natural selection). On the contrary, in females, the variation in bite force and head size can, to a certain extent, be explained by variation in diet. These results suggest that whereas in males, sexual selection seems to be operating on bite performance, in the case of females, natural selection seems to be the most likely and most important selective pressure driving the variation in head size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 461–475.  相似文献   

10.
In mammals, ‘female‐biased’ sexual size dimorphism (SSD), in which females are larger than males, is uncommon. In the present study, we examined Sylvilagus, a purported case of female‐biased SSD, for evolutionary correlations among species between SSD, body‐size, and life‐history variables. We find that: (1) although most species are female‐biased, the degree and direction of SSD vary more than was previously recognized and (2) the degree of SSD decreases with increasing body size. Hence, Sylvilagus provides a new example, unusual for a female‐biased taxon, in which allometry for SSD is consistent with ‘Rensch's Rule’. As a corollary to Rensch's Rule, we observe that changes in SSD in Sylvilagus are typically associated with larger, more significant changes in males than females. Female‐biased SSD could be produced by selection for larger females, smaller males, or both. Although larger female size may be related to high fecundity and the extremely rapid fetal and neonatal growth in Sylvilagus, we find little evidence for a correlation between SSD and various fecundity‐related traits in among‐species comparisons. Smaller male size may confer greater reproductive success through greater mobility and reduced energetic requirements. We propose that a suite of traits (female dispersion, large male home ranges, reduced aggression, and a promiscuous mating system) has favoured smaller males and thus influenced the evolution of SSD in cottontails. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 141–156.  相似文献   

11.
The hawk owl genus Ninox is unique among raptorial birds in that it includes three species in which males are substantially larger than females. This is a reversal of the normal pattern observed in both diurnal and nocturnal raptorial birds in which females are larger. Interestingly, these three Ninox species also are both the largest of the 22 species in the genus and the only species that exhibit the striking behaviour of ‘prey holding’ in which large (> 600 g) mammalian or avian prey is captured at night and held with body parts intact, and draped below a roost for the entire day without being consumed. Because explanations of the evolution of large male size suggest that it results from competition among males, the adaptive significance of prey holding was studied in a wild population of powerful owl Ninox strenua. Prey holding is largely confined to breeding males and its occurrence varies significantly across the breeding cycle, being most frequent during incubation and brooding. The study did not clearly resolve whether prey holding is a form of food storage or territorial display; however, both functions can select for large male body size and therefore play a significant role in the evolution of nonreversed size dimorphism. Although female‐only incubation and brooding is typical of Ninox owls and other owl species, prey holding appears to occur only in the large Ninox species because of the unique combination of large body size, large prey size, separate sex roles, and obligate cavity nesting. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 284–292.  相似文献   

12.

Among fishes, salmonids (family Salmonidae) have attracted a great deal of research attention focused on sexual dimorphism and associated selective forces. Most of this research has been directed toward anadromous and mostly semelparous salmon and trout (Oncorhynchus, Salmo), and comparatively little is known about intersexual variability in strictly iteroparous freshwater salmonids. We examined a comprehensive data set of 28 linear morphometric characters in 11 of 15 currently recognised species of grayling (Thymallinae, Thymallus), a genus consisting of iteroparous species only, to identify general patterns of intersexual morphological variability. Overall, we found that all grayling species show common sex-specific traits particularly relating to size dimensions of the dorsal, anal, pelvic and pectoral fins. Although the magnitude of sexual dimorphism differed among species, there was no significant phylogenetic signal associated with these differences across the genus. These results are discussed in terms of the assumed selection pressures driving sexual dimorphism in graylings and are compared to existing knowledge in Salmonidae as a whole where similarities and differences with both Salmoninae and Coregoninae exist. The present study provides the first detailed genus-wide comparison of sexually dimorphic phenotypic characters in graylings, and highlights the need for more large-scale comparative studies in multiple salmonid species to better understand general macroevolutionary trends among this important group of freshwater fishes.

  相似文献   

13.
Secondary sexual dimorphism can make the discrimination of intra and interspecific variation difficult, causing the identification of evolutionary lineages and classification of species to be challenging, particularly in palaeontology. Yet sexual dimorphism is an understudied research topic in dioecious marine snails. We use landmark-based geometric morphometric analysis to investigate whether there is sexual dimorphism in the shell morphology of the siphon whelk Penion chathamensis. In contrast to studies of other snails, results strongly indicate that there is no difference in the shape or size of shells between the sexes. A comparison of P. chathamensis and a related species demonstrates that this result is unlikely to reflect a limitation of the method. The possibility that sexual dimorphism is not exhibited by at least some species of Penion is advantageous from a palaeontological perspective as there is a rich fossil record for the genus across the Southern Hemisphere.  相似文献   

14.
An organism's phenotype is to some extent influenced by costs and benefits in terms of natural and sexual selection. The intensity of natural selection can in part be driven by habitat structure, which may result in varying levels of crypsis and/or selection on traits related to maximizing performance in that habitat. This may be countered by sexual selection, which can lead to sexual dimorphism in body size and/or the expression of conspicuous ornamentation relating to maximizing reproductive success. The intensity of these forces can also be different between the sexes, resulting in complex patterns of phenotypic variation. With this in mind, we examined morphological variation within the Cape Dwarf Chameleon, Bradypodion pumilum. The species inhabits two geographically disjunct habitat types and, in the present study, we demonstrate that chameleons from the two habitats show morphological differences. Large, conspicuous individuals inhabit closed vegetation, whereas small, drab individuals inhabit open vegetation. However, when morphological traits are size‐adjusted, the open vegetation morph displays many traits that are larger for its body size than the closed vegetation morph, especially for characters related to locomotion (limbs) and bite force (head width). Sexual dimorphism is also present, although the degree and number of dimorphic characters was very different between the two morphs, with size‐adjusted male‐biased dimorphism much more pronounced in the closed morph. Overall, our findings suggest that natural selection in open habitats limits both body size and conspicuous characters, although sexual selection in closed habitats favours the development of ornamentation related to display. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 878–888.  相似文献   

15.
16.
Theory predicts marked sexual dimorphism in terms of body size and body structures used as weapons (e.g. chelipeds) in gonochoric species with intense male sexual competition for receptive females and reduced or no sexual dimorphism in species where competition among males is trivial. We tested this hypothesis using a pair of closely‐related species of symbiotic porcelain crabs as a model. In one species that inhabits sea anemones solitarily, competition among males for receptive females is unimportant. In a second species that dwells as dense aggregations on sea urchins, male–male competition for sexual partners is recurrent. We expected considerable sexual dimorphism in body size and weaponry in the urchin‐dwelling crab and reduced sexual dimorphism in the anemone‐dwelling crab. In agreement with expectations, in the urchin‐dwelling crab, male body size was, on average, larger than that of females and males invested considerably more to cheliped length than females. Also supporting theoretical considerations, in the anemone‐dwelling crab, sexual dimorphism in terms of body size was not detected and differences between the sexes in investment to cheliped length were minor. Interestingly, chelipeds were more developed both in males and females of the anemone‐dwelling crab than in the urchin‐dwelling crab as a result of the importance of these structures for monopolization of their naturally scarce anemone hosts. Another difference between the studied species was the existence of two clearly distinguishable ontogenetic phases in males of the urchin‐dwelling crab but not in males of the anemone‐dwelling crab. Whether the two different male morphs display different male reproductive strategies in the urchin‐dwelling crab remains to be addressed. Other conditions that might additionally explain the observed differences in sexual dimorphism (e.g. female mate choice) between the studied species remain to be explored. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 548–558.  相似文献   

17.
Genitalia are among the most variable of morphological traits, and recent research suggests that this variability may be the result of sexual selection. For example, large bacula may undergo post‐copulatory selection by females as a signal of male size and age. This should lead to positive allometry in baculum size. In addition to hyperallometry, sexually selected traits that undergo strong directional selection should exhibit high phenotypic variation. Nonetheless, in species in which pre‐copulatory selection predominates over post‐copulatory selection (such as those with male‐biased sexual size dimorphism), baculum allometry may be isometric or exhibit negative allometry. We tested this hypothesis using data collected from two highly dimorphic species of the Mustelidae, the American marten (Martes americana) and the fisher (Martes pennanti). Allometric relationships were weak, with only 4.5–10.1% of the variation in baculum length explained by body length. Because of this weak relationship, there was a large discrepancy in slope estimates derived from ordinary least squares and reduced major axis regression models. We conclude that stabilizing selection rather than sexual selection is the evolutionary force shaping variation in baculum length because allometric slopes were less than one (using the ordinary least squares regression model), a very low proportion of variance in baculum length was explained by body length, and there was low phenotypic variability in baculum length relative to other traits. We hypothesize that this pattern occurs because post‐copulatory selection plays a smaller role than pre‐copulatory selection (manifested as male‐biased sexual size dimorphism). We suggest a broader analysis of baculum allometry and sexual size dimorphism in the Mustelidae, and other taxonomic groups, coupled with a comparative analysis and with phylogenetic contrasts to test our hypothesis. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 955–963.  相似文献   

18.
Rensch's rule, a macroevolutionary pattern in which sexual size dimorphism (SSD) increases with body size in male‐biased SSD species, or decreases with female‐biased SSD species, has been investigated in many vertebrates because it indicates whether SSD is being driven by sexual selection or a different force (i.e. fecundity or natural selection). Evidence in turtles has shown some conflicting results, which may be explained by the different phylogenies used in the analyses. Because the newly available well‐resolved phylogeny of family Kinosternidae provides evidence for the ancient monophyly of Staurotypidae and Kinosternidae and their recognition as separate families (previously Staurotypidae was considered as a subfamily within Kinosternidae) and introduced the genus Cryptochelys for the monophyletic leucostomum clade, we revisit the pattern of SSD and body size in Kinosternidae. By contrast to what had been proposed, we found that the Kinosternidae as formerly recognized (i.e. including Staurotypus and Claudius) and the restricted Kinosternidae both follow a pattern consistent with Rensch's rule. Our analysis with published body size data did not change our results, confirming the importance of the phylogeny used in macroevolutionary studies. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 806–809.  相似文献   

19.
Podarcis bocagei and Podarcis carbonelli are two lacertid species endemic to the western Iberian Peninsula, and both show head size and shape sexual dimorphism. We studied immature and adult head sexual dimorphism and analysed ontogenetic trajectories of head traits with body and head size, aiming to shed light on the proximate mechanisms involved. Immatures were much less dimorphic than adults, but geometric morphometric techniques revealed that head shape sexual differences are already present at this stage. Males and females differed in allometry of all head characters with body size, with males showing a disproportionate increase of head size and dimensions. On the other hand, head dimensions and head shape changed with increasing head size following similar trends in both sexes, possibly indicating developmental restrictions. Consequently, adult sexual dimorphism for head characters in these species is the result of both shape differences in the immature stage and hypermetric growth of the head in relation to body size in males.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 111–124.  相似文献   

20.
The skulls of 33 extant cat species were characterized through three‐dimensional geometric morphometrics using 20 landmarks. A principal component analysis (PCA) was performed with Procrustes fitted coordinates, and the PC‐scores were phylogenetically corrected by independent contrasts method. Three PCs allowed for the definition of five cat skull patterns. PC1: ‘snouted/massive‐headed cats’ (genus Panthera) opposing the ‘round‐headed small cats’ (genus Oncifelis, Prionailurus rubiginosus, Prionailurus bengalensis, among other small cats); PC2: ‘tapering‐headed cats’ (Neofelis nebulosa, Herpailurus yagouaroundi, Prionailurus planiceps) opposing the ‘stout‐headed cats’ (Acinonyx jubatus, Uncia uncia, Otocolobus manul, Felis margarita, and Felis nigripes); and PC3: ‘low profiled‐headed cats’ (mostly, Pr. planiceps). A sixth pattern, the ‘generalized skull’, observed in the Caracal lineage, genus Lynx, Leopardus pardalis, and Catopuma temminckii, indicates a morphological convergence among midsized‐cats. The morphological trends ‘snouted/massive’ and ‘round’ clearly denote a co‐evolution between size and shape. The other skull patterns evolved unrelatedly to the size (i.e. their allometric variations are not a size function). Nevertheless, each species comprises an amalgam of these patterns, so the influence of the size permeates, in some extent, the skull morphology along all cat lineages. The felid ecomorphological fit to hypercarnivory is obvious; however, different skull shapes in same‐sized species with similar habits, indicate that the variation in the skull morphology may result from phenotypic fluctuations, whose adaptive value (if indeed there is any) is still obscure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 176–190.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号