首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An increase in resistance to one natural enemy may result in no correlated change, a positive correlated change, or a negative correlated change in the ability of the host or prey to resist other natural enemies. The type of specificity is important in understanding the evolutionary response to natural enemies and was studied here in a Drosophila-paxasitoid system. Drosophila melanogaster lines selected for increased larval resistance to the endoparasitoid wasps Asobara tabida or Leptopilina boulardi were exposed to attack by A. tabida, L. boulardi and Leptopilina heterotoma at 15°C, 20°C, and 25°C. In general, encapsulation ability increased with temperature, with the exception of the lines selected against L. boulardi, which showed the opposite trend. Lines selected against L. boulardi showed large increases in resistance against all three parasitoid species, and showed similar levels of defense against A. tabida to the lines selected against that parasitoid. In contrast, lines selected against A. tabida showed a large increase in resistance to A. tabida and generally to L. heterotoma, but displayed only a small change in their ability to survive attack by L. boulardi. Such asymmetries in correlated responses to selection for increased resistance to natural enemies may influence host-parasitoid community structure.  相似文献   

2.
Abiotic and biotic factors affect life‐history traits and lead populations to exhibit different behavioural strategies. Due to the direct link between their behaviour and fitness, parasitoid females have often been used to test the theories explaining these differences. In male parasitoids, however, such investigations are vastly understudied, although their mating strategy directly determines their fitness. In this study, we compared the pattern of life history traits and the mating strategy of males in two populations of the Drosophila parasitoid Asobara tabida, exposed to different biotic and abiotic conditions, with the major difference being that one of them was recently exposed to strong competition with the dominant competitor Leptopilina boulardi after recent climate change, the other population being settled in a location where L. boulardi has not been recorded. The results showed that individuals of both populations have a different reproductive strategy: in one population, females produced a more female‐biased sex ratio, while males accumulated more lipids during their larval development, invested more energy in reproduction and decreased their locomotor activity, suggesting a higher proportion of matings on their emergence patch, all of these factors being possibly linked to the new competition pressure. In both populations, mating without sperm transfer may persist for several days after males become sperm‐depleted, and may be more frequent than mating with sperm transfer over their whole lifespan. This point is discussed from an evolutionary point of view.  相似文献   

3.
The densities of conspecific individuals may vary through space, especially at the edge of species range. This variation in density is predicted to influence the diffusion of species‐specific horizontally transmitted symbionts. However, to date there is very little data on how parasite prevalence varies around the border of a host species. Using a molecular epidemiology approach, we studied the prevalence of a vertically and horizontally transmitted virus at the edge of the geographic range of its insect host, the Drosophila parasitoid wasp Leptopilina boulardi. L. boulardi is a Mediterranean parasitoid species showing a recent range expansion to the north (in France). The LbFV virus manipulates the behaviour of females, increasing their tendency to lay additional eggs in already parasitized Drosophila larvae (superparasitism). This is beneficial for the virus because it allows the virus to be horizontally transferred during superparasitism. We show that LbFV prevalence is very high in central populations, intermediate in marginal populations and almost absent from newly established peripheral populations of L. boulardi. We failed to detect any influence of temperature and diapause on viral transmission efficiency but we observed a clear relationship between prevalence and parasitoid density, and between parasitoid density and the occurrence of superparasitism, as predicted by our epidemiological model. Viral strains were all efficient at inducing the behavioural manipulation and viral gene sequencing revealed very low sequence variation. We conclude that the prevalence reached by the virus critically depends on density‐dependent factors, i.e. superparasitism, underlying the selective pressures acting on the virus to manipulate the behaviour of the parasitoid.  相似文献   

4.
It is known that the braconid Asobara tabida, a parasitoid of Drosophila larvae, takes oviposition decisions in accordance with survival probabilities in several host species. Nevertheless, larvae of D. simulans, in which the survival probability is virtually zero, are readily accepted for oviposition by searching females. This even happens when they are offered together with D. melanogaster larvae, in which the parasitoid can develop. Here I show that A. tabida can act as a kleptoparasitoid in D. simulans larvae: it can develop in D. simulans larvae, once these larvae are parasitized by another parasitoid, the eucoilid Leptopilina boulardi. Analysis with an optimal foraging model suggests that the increase in survival probability and the occurrence of L. boulardi in the field are high enough to make this kleptoparasitic behaviour of A. tabida pay.  相似文献   

5.
Summary The ability ofDrosophila melanogaster larvae in Europe to encapsulate the eggs of their most important parasitoids,Asobara tabida andLeptopilina boulardi, shows a large amount of geographical variation. Interestingly, encapsulation ability againstA. tabida is not correlated with encapsulation ability againstL. boulardi. This indicates that the encapsulation system ofD. melanogaster larvae has parasitoid-specific components. The variation in encapsulation ability can only partly be explained by the incidence of parasitism on the larvae. This means that factors other than the two parasitoid species must be selection pressures on the encapsulation ability ofD. melanogaster larvae.  相似文献   

6.
Replicate lines of Drosophila melanogaster have been selected for increased resistance against one of two species of parasitoid wasp, Asobara tabida and Leptopilina boulardi. In both cases, it has been shown that an improved ability to mount an immunological defense against the parasitoid's egg is associated with reduced survival when the larvae are reared under conditions of low resource availability and thus high competition. We show here that in both sets of selected lines, lower competitive ability is associated with reduced rates of larval feeding, as measured by the frequency of retractions of the cephalopharyngeal skeleton. This suggests that the same or similar physiological processes are involved in the trade-off between competition and resistance against either parasitoid and shows how the interaction between adaptations for competition and natural enemy resistance may be mediated.  相似文献   

7.
Foraging parasitoids are thought to need more specific information than generalists on the presence, identity, availability, and suitability of their insect host species. In the present paper, we compare responses to host kairomones by two phylogenetically related parasitoid species that attack Drosophilidae and that differ in the width of their host range. As predicted, the behavioral response of the parasitoids to host kairomones reflected their difference in host range. The response of the specialist parasitoid Leptopilina boulardiwas restricted to contact kairomones from its natural hosts and one closely related species. In contrast, the generalist parasitoid Leptopilina heterotomaresponded to contact kairomones of a variety of Drosophilidae species.  相似文献   

8.
Infestation of larvae of Drosophila melanogaster by both Leptopilina boulardi and L. heterotoma (Hymenoptera, Cynipidae: Eucoilidae) varies according to within-population genetic variations in the hosts. L. heterotoma larvae thrive better than L. boulardi and developmental success of both parasitoids varies according to the host's genotype. Crowding in hosts improves success rate of both species, that of L. boulardi then being equal to that of L. heterotoma.
Résumé Les résultats de l'infestation des larves de D. melanogaster par les Cynipides Leptopilina boulardi et L. heterotoma varient selon le génotype des hôtes et leur état nutritionnel. L'analyse génétique de la population hôte par la méthode des lignées isofemelles montre que le degré d'infestation (pourcentage de larves effectivement parasitées dans des tests standidardisés) varie significativement entre lignées. Le taux de succès du développement parasitaire (pourcentage d'hôtes parasités fournissant un parasite adulte) est plus élevé chez L. heterotoma que chez L. boulardi et varie fortement entre lignées d'hôtes. Les variations chez les deux parasites sont corrélées.La sous-alimentation des larves parasitées augmente le succès du développement des deux parasites et celui de L. boulardi devient alors égal à celui de L. heterotoma.La réponse à l'infestation par les deux Cynipides n'est pas uniforme au sein de la population hôte et varie en fonction de l'abondance des ressources nutritionnelles de ce dernier.
  相似文献   

9.
Unlike other Drosophila species, the invasive Drosophila suzukii Matsumura (Diptera: Drosophilidae) shows a remarkable pest status. Among the physiological traits that may explain the high level of resistance to parasitoids of Drosophila larvae, the haemocyte load is shown repeatedly to play an important role. To determine whether haemocyte load can explain immunity resistance of D. suzukii to parasitoids, the haemocytes of parasitized and healthy larvae are quantified in two Japanese and three French populations of D. suzukii. Parasitization tests are conducted with two larval parasitoids: the paleartic Leptopilina heterotoma Thomson (Hymenoptera: Figitidae) and the Asian Asobara japonica Belokobylskij (Hymenoptera: Braconidae). Based on morphological and functional criteria, D. suzukii has classes of haemocytes similar to those described in Drosophila melanogaster. However, healthy larvae of the five populations tested possess particularly large numbers of haemocytes compared with D. melanogaster. Haemocyte load is also higher in larvae from the French populations than in the Japanese strains. The ability of D. suzukii larvae to encapsulate eggs of L. heterotoma is associated with a particularly high load of circulating haemocytes. However, it is notable that A. japonica induces a strong depression of the haemocyte population in this resistant host associated with an inability to encapsulate parasitoid eggs. The results show that the cellular immune system plays a major role in the failure of larval parasitoids to develop in most instances in larvae of D. suzukii, possibly contributing to the success of this species as an invader.  相似文献   

10.
In parasitoid insects, successful offspring development depends on the female’s ability to find a suitable host. Specific recognition is often based on responses to olfactory cues, but their source and nature have rarely been determined. –This paper deals with the recognition of odours involved in host location by Leptopilina boulardi[Barbotin, Carton & Kelner-Pillault] (Hymenoptera: Eucoilidae), a larval parasitoid of Drosophila species that develops in mature fruits. The nature and origin of volatile stimuli recognized among odours of the host–fruit complex, and the effect of learning on this recognition, were investigated. Oriented responses to these odours were observed in a four-armed olfactometer and were analysed with the observer software (Noldus Information Technology). Fruit odours alone (banana and pear) were not spontaneously attractive to naive parasitoids, whereas naturally-infested bananas were highly attractive. The attraction was related to the odour that adult Drosophila left on the substrate but not to Drosophila oviposition activity or larval development. A synergism between some fruit odours (banana and pear) and the odour left by adult Drosophila on damp filter paper was observed. However, when testing a non-fruit substrate (mushroom), no synergism was observed. Thus, female L. boulardi may innately recognize host–food substrate odours associated with odours from the adult stage of their host. In addition, an oviposition experience on an infested banana allows L. boulardi females to memorise the fruit odour itself through associative learning. The adaptive significance of this process is discussed.  相似文献   

11.
12.
Effects of learning in two microhabitat specialists, Leptopilina boulardia Barbotin et al. and L. fimbriata Kieffer were compared to previous and new results of learning in the microhabitat generalist L. heterotoma Thomson. Females were given one or more oviposition experiences on hosts in different types of substrate. In all species oviposition experience affected the choice for a substrate, although this effect of learning was considerably less in L. fimbriata compared to the other two species. Patch times, known to be highly determined by experience in the generalist L. heterotoma, were much less flexible in the specialists. L. boulardi and L. fimbriata have fixed patch times on their natural substrate and have variable patch times on other substrates only. In all three species one oviposition affected the choice for a substrate. Additional ovipositions showed no different effect. An accumulative effect of the number of ovipositions on patch times was found in L. heterotoma only. Retention of the learning effect was only studied in L. boulardi, and was shown to be similar to that reported for L. heterotoma, i.e. two to three days. Although learning was found in both the generalist and the specialist species studied, it seems to affect their foraging behaviour differently.  相似文献   

13.
Populations of Drosophila melanogaster face significant mortality risks from parasitoid wasps that use species‐specific strategies to locate and survive in hosts. We tested the hypothesis that parasitoids with different strategies select for alternative host defense characteristics and in doing so contribute to the maintenance of fitness variation and produce trade‐offs among traits. We characterized defense traits of Drosophila when exposed to parasitoids with different host searching behaviors (Aphaereta sp. and Leptopilina boulardi). We used host larvae with different natural alleles of the gene Dopa decarboxylase (Ddc), a gene controlling the production of dopamine and known to influence the immune response against parasitoids. Previous population genetic analyses indicate that our focal alleles are maintained by balancing selection. Genotypes exhibited a trade‐off between the immune response against Aphaereta sp. and the ability to avoid parasitism by L. boulardi. We also identified a trade‐off between the ability to avoid parasitism by L. boulardi and larval competitive ability as indicated by differences in foraging and feeding behavior. Genotypes differed in dopamine levels potentially explaining variation in these traits. Our results highlight the potential role of parasitoid biodiversity on host fitness variation and implicate Ddc as an antagonistic pleiotropic locus influencing larval fitness traits.  相似文献   

14.
Approximately three decades ago the question was first answered whether parasitoids are able to assess the number or origin of eggs in a host for a solitary parasitoid, Leptopilina heterotoma, by fitting theoretically derived distributions to empirical ones. We extend the set of different theoretically postulated distributions of eggs among hosts by combining searching modes and abilities in assessing host quality. In the models, parasitoids search either randomly (Poisson) (1) or by vibrotaxis (Negative Binomial) (2). Parasitoids are: (a) assumed to treat all hosts equally, (b) able to distinguish them in unparasitised and parasitised hosts only, (c) able to distinguish them by the number of eggs they contained, or (d) able to recognise their own eggs. Mathematically tractable combinations of searching mode (1 and 2) and abilities (a,b,c,d) result in seven different models (M1a, M1b, M1c, M1d, M2a, M2b and M2c). These models have been simulated for a varying number of searching parasitoids and various mean numbers of eggs per host. Each resulting distribution is fitted to all theoretical models. The model with the minimum Akaike's information criterion (AIC) is chosen as the best fitting for each simulated distribution. We thus investigate the power of the AIC and for each distribution with a specified mean number of eggs per host we derive a frequency distribution for classification.Firstly, we discuss the simulations of models including random search (M1a, M1b, M1c and M1d). For M1a, M1c and M1d the simulated distributions are correctly classified in at least 70% of all cases. However, in a few cases model M1b is only properly classified for intermediate mean values of eggs per host. The models including vibrotaxis as searching behaviour (M2a, M2b and M2c) cannot be distinguished from those with random search if the mean number of eggs per host is low. Among the models incorporating vibrotaxis the three abilities are detected analogously as in models with random search.Experiments with two species of solitary parasitoids (L. heterotoma and Asobara tabida) are conducted. All theoretically postulated distributions are separately fitted to the resulting experimental egg distributions. The AIC criterion is used to choose the best fitting theoretical distribution. For both parasitoid species the frequency distribution of best fitting models for experimental data is compared to the classification of distributions generated by simulations. This leads to the conclusion that both L. heterotoma and A. tabida are able to distinguish between parasitised and unparasitised hosts. For L. heterotoma the results point to an ability to assess the number of eggs in a host, whereas A. tabida does not seem to have this ability. This difference suggests that an egg is more valuable for L. heterotoma than for A. tabida.  相似文献   

15.
1. Climate is an important source of selection on life histories, and local adaptations to climate have been described in several cline studies. Temperature is the main climatic factor that has been considered as an agent of selection, whereas other factors may vary with it, such as precipitation. 2. We compared life‐history traits of five populations of Leptopilina boulardi, a Drosophila parasitoid, originating from contrasting climates. Referring to cline studies, we hypothesised shorter lifespan, earlier reproduction, and lower lipid content in populations from the hottest and driest areas if life histories have been selected in response to temperature and/or humidity. 3. Our results are opposite to these predictions. Females from humid and mild climates invested more in early reproduction and lived for fewer days than females from dry and hot areas, which were synovigenic (i.e. they matured additional eggs during adult life) and able to synthesise lipids during adult life. 4. We suggest that life histories are more adapted to host distribution than to climatic factors. Drosophila patches are more abundant in the humid area, allowing the parasitoids to spend less energy and time finding hosts. This may result in selection for early reproduction traded‐off against longevity. In the hot and dry climate, females have to fly large distances to find host patches. Synovigeny, a long lifespan, lipogenesis, and high dispersal ability may be adaptive there. This is the first time that between‐population differences in the ability to synthesise lipids have been described in parasitoids.  相似文献   

16.
The hypothesis of optimal host species selection predicts that when a parasitoid has the choice between two host species, it will choose the species thay gives the best survival chances for its progeny. We confirmed this hypothesis by laboratory experiments with Leptopilina boulardi Barb. et al., a cynipid parasitoid which prefers Drosophila melanogaster Meigen (the host species most suitable for parasitoid survival) above D. simulans Sturt. As far as fitness parameters are concerned, the fertility of L. boulardi is higher with D. melanogaster; the egg laying can be spread out over a long period when this host is relatively scarce. This does not occur with D. simulans in which parasitic oviposition stops soon when this host is not abundant.Investigations of this foraging strategy were done under more complex natural conditions. We found that L. boulardi has a type III functional response with D. melanogaster only; furthermore, it seems that a switching effect may exist with this host. Parasitoid females appear to distribute their eggs more regularly on D. melanogaster, thus avoiding superparasitism. This seems to be independent of the relative frequency of this host. However, superparasitism of D. simulans did occur more frequently when this host was scarce.
Stratégie de ponte de Leptopilina boulardi (hyménoptère parasite de drosophiles) dans les conditions naturelles
Résumé Le concept de réponse optimale d'un parasite vis-à-vis de l'hôte le plus favorable pour son développement demeure surtout théorique et n'a pu être vérifié que dans les conditions de laboratoire. Nous avons montré que Drosophila melanogaster s'avère être, par rapport à D. simulans, l'hôte le plus favorable pour le développement du cynipide parasite Leptopilina boulardi. Une étude sur le terrain a démontré que ce parasite présente une réponse fonctionnelle densité dépendante vis-à-vis de D. melanogaster et non vis-à-vis de D. simulans, avec un effet de bascule. D'autre part, il s'avère que ce parasite exploite beaucoup mieux son hôte, en évitant le superparasitisme, ceci étant démontré au laboratoire et dans la nature. Enfin, il apparaît qu'il est capable d'allonger sa période de ponte lorsque cet hôte est rare, ce qui ne se produit pas avec D. simulans.
  相似文献   

17.
Coexistence of species sharing the same resources is often possible if species are phylogenetically divergent in resource acquisition and allocation traits, decreasing competition between them. Developmental and life-history traits related to resource use are influenced by environmental conditions such as temperature, but thermal trait responses may differ among species. An increase in ambient temperature may, therefore, affect trait divergence within a community, and potentially species coexistence. Parasitoids are interesting models to test this hypothesis, because multiple species commonly attack the same host, and employ divergent larval and adult host use strategies. In particular, development mode (arrested or continued host growth following parasitism) has been recognized as a major organiser of parasitoid life histories. Here, we used a comparative trait-based approach to determine thermal responses of development time, body mass, egg load, metabolic rate and energy use of the coexisting Drosophila parasitoids Asobara tabida, Leptopilina heterotoma, Trichopria drosophilae and Spalangia erythromera. We compared trait values between species and development modes, and calculated trait divergence in response to temperature, using functional diversity indices. Parasitoids differed in their thermal response for dry mass, metabolic rate and lipid use throughout adult life, but only teneral lipid reserves and egg load were affected by developmental mode. Species-specific trait responses to temperature were probably determined by their adaptations in resource use (e.g. lipogenesis or ectoparasitism). Overall, trait values of parasitoid species converged at the higher temperature. Our results suggest that local effects of warming could affect host resource partitioning by reducing trait diversity in communities.  相似文献   

18.
Co‐evolution of host–parasitoid interactions is determined by the costs of host resistance, which received empirical evidence, and the costs of parasitoid virulence, which have been mostly hypothesized. Asobara tabida is a parasitoid, which mainly parasitizes Drosophila melanogaster and D. subobscura, the first species being able to resist to the parasitoid development while the second species is not. To parasitize resistant hosts, including D. melanogaster, A. tabida develops sticky eggs, which prevent encapsulation, but this virulence mechanism may be costly. Interindividual and interpopulation variation in the proportion of sticky eggs respectively allowed us to (i) artificially select and compare life‐history traits of a virulent and a nonvirulent laboratory strain, and (ii) compare a virulent and a nonvirulent field strain, to investigate the hypothetical costs of virulence. We observed strong differences between the 2 laboratory strains. The nonvirulent strain invested fewer resources in reproduction and walked less than the virulent one but lived longer. Concerning the field strains, we observed that the nonvirulent strain had larger wings while the virulent one walked more and faster. All together, our results suggest that virulence may not always be costly, but rather that different life histories associated with different levels of virulence may coexist at both intra‐ and interpopulation levels.  相似文献   

19.
Leptopilina heterotoma is a Drosophila parasitoid mainly occurring in temperate regions, and females of this species are pro‐ovigenic (i.e. all or nearly all of their lifetime eggs are already mature at emergence). Here I investigated how L. heterotoma overwinters in Sapporo, Japan, a cool temperate region, by outdoor and laboratory experiments. Females of this species had mature eggs at emergence as expected, and they did not resorb eggs even if they were exposed to cold or starvation. Nevertheless, females were able to overwinter, and post‐overwintering females retained parasitization capacity. In this species, thus, adult overwintering is not associated with reproductive diapause. However, females grown in late autumn or at low temperatures (e.g. 5°C) had a fewer number of mature eggs and higher winter survival. At low temperatures, female larvae could save energy by reducing egg production and allocate the saved energy to expenditure for overwintering. In contrast to females, males and pre‐adult individuals were not able to overwinter.  相似文献   

20.
Despite the intensive use of the Leptopilina genus and its drosophilid hosts as model systems in the study of host–parasitoid interactions, the diversity and distribution of the species occurring in the Asian region remain elusive. Here we report the phylogeny of Japanese Leptopilina species attacking frugivorous drosophilid flies, based on COI, ITS1 and ITS2 sequences. Consistent with molecular data, hybridization experiments and morphological examination, five species were recorded in Japan: Leptopilina heterotoma, L. victoriae and three new species, two occurring in the Ryukyu archipelago, L. ryukyuensis and L. pacifica, and another species, L. japonica, distributed in Honshu and Hokkaido. Leptopilina japonica is further divided into two subspecies, L. j. japonica occurring in Japan, and L. j. formosana occurring in Taiwan. According to these results, we discuss the evolution, speciation and colonization history of Japanese Leptopilina species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号