首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive accumulation of β-amyloid peptides in the brain is a major cause for the pathogenesis of Alzheimer disease. β-Amyloid is derived from β-amyloid precursor protein (APP) through sequential cleavages by β- and γ-secretases, whose enzymatic activities are tightly controlled by subcellular localization. Delineation of how intracellular trafficking of these secretases and APP is regulated is important for understanding Alzheimer disease pathogenesis. Although APP trafficking is regulated by multiple factors including presenilin 1 (PS1), a major component of the γ-secretase complex, and phospholipase D1 (PLD1), a phospholipid-modifying enzyme, regulation of intracellular trafficking of PS1/γ-secretase and β-secretase is less clear. Here we demonstrate that APP can reciprocally regulate PS1 trafficking; APP deficiency results in faster transport of PS1 from the trans-Golgi network to the cell surface and increased steady state levels of PS1 at the cell surface, which can be reversed by restoring APP levels. Restoration of APP in APP-deficient cells also reduces steady state levels of other γ-secretase components (nicastrin, APH-1, and PEN-2) and the cleavage of Notch by PS1/γ-secretase that is more highly correlated with cell surface levels of PS1 than with APP overexpression levels, supporting the notion that Notch is mainly cleaved at the cell surface. In contrast, intracellular trafficking of β-secretase (BACE1) is not regulated by APP. Moreover, we find that PLD1 also regulates PS1 trafficking and that PLD1 overexpression promotes cell surface accumulation of PS1 in an APP-independent manner. Our results clearly elucidate a physiological function of APP in regulating protein trafficking and suggest that intracellular trafficking of PS1/γ-secretase is regulated by multiple factors, including APP and PLD1.An important pathological hallmark of Alzheimer disease (AD)4 is the formation of senile plaques in the brains of patients. The major components of those plaques are β-amyloid peptides (Aβ), whose accumulation triggers a cascade of neurodegenerative steps ending in formation of senile plaques and intraneuronal fibrillary tangles with subsequent neuronal loss in susceptible brain regions (1, 2). Aβ is proteolytically derived from the β-amyloid precursor protein (APP) through sequential cleavages by β-secretase (BACE1), a novel membrane-bound aspartyl protease (3, 4), and by γ-secretase, a high molecular weight complex consisting of at least four components: presenilin (PS), nicastrin (NCT), anterior pharynx-defective-1 (APH-1), and presenilin enhancer-2 (PEN-2) (5, 6). APP is a type I transmembrane protein belonging to a protein family that includes APP-like protein 1 (APLP1) and 2 (APLP2) in mammals (7, 8). Full-length APP is synthesized in the endoplasmic reticulum (ER) and transported through the Golgi apparatus. Most secreted Aβ peptides are generated within the trans-Golgi network (TGN), also the major site of steady state APP in neurons (911). APP can be transported to the cell surface in TGN-derived secretory vesicles if not proteolyzed to Aβ or an intermediate metabolite. At the cell surface APP is either cleaved by α-secretase to produce soluble sAPPα (12) or reinternalized for endosomal/lysosomal degradation (13, 14). Aβ may also be generated in endosomal/lysosomal compartments (15, 16). In contrast to neurotoxic Aβ peptides, sAPPα possesses neuroprotective potential (17, 18). Thus, the subcellular distribution of APP and proteases that process it directly affect the ratio of sAPPα to Aβ, making delineation of the mechanisms responsible for regulating trafficking of all of these proteins relevant to AD pathogenesis.Presenilin (PS) is a critical component of the γ-secretase. Of the two mammalian PS gene homologues, PS1 and PS2, PS1 encodes the major form (PS1) in active γ-secretase (19, 20). Nascent PSs undergo endoproteolytic cleavage to generate an amino-terminal fragment (NTF) and a carboxyl-terminal fragment (CTF) to form a functional PS heterodimer (21). Based on observations that PSs possess two highly conserved aspartate residues indispensable for γ-secretase activity and that specific transition state analogue γ-secretase inhibitors bind to PS1 NTF/CTF heterodimers (5, 22), PSs are believed to be the catalytic component of the γ-secretase complex. PS assembles with three other components, NCT, APH-1, and PEN-2, to form the functional γ-secretase (5, 6). Strong evidence suggests that PS1/γ-secretase resides principally in the ER, early Golgi, TGN, endocytic and intermediate compartments, most of which (except the TGN) are not major subcellular sites for APP (23, 24). In addition to generating Aβ and cleaving APP to release the APP intracellular domain, PS1/γ-secretase cleaves other substrates such as Notch (25), cadherin (26), ErbB4 (27), and CD44 (28), releasing their respective intracellular domains. Interestingly, PS1/γ-secretase cleavage of different substrates seems to occur at different subcellular compartments; APP is mainly cleaved at the TGN and early endosome domains, whereas Notch is predominantly cleaved at the cell surface (9, 11, 29). Thus, perturbing intracellular trafficking of PS1/γ-secretase may alter interactions between PS1/γ-secretase and APP, contributing to either abnormal Aβ generation and AD pathogenesis or decreased access of PS1/γ-secretase to APP such that Aβ production is reduced. However, mechanisms regulating PS1/γ-secretase trafficking warrant further investigation.In addition to participating in γ-secretase activity, PS1 regulates intracellular trafficking of several membrane proteins, including other γ-secretase components (nicastrin, APH-1, and PEN-2) and the substrate APP (reviewed in Ref. 30). Intracellular APP trafficking is highly regulated and requires other factors such as mint family members and SorLA (2). Moreover, we recently found that phospholipase D1 (PLD1), a phospholipid-modifying enzyme that regulates membrane trafficking events, can interact with PS1, and can regulate budding of APP-containing vesicles from the TGN and delivery of APP to the cell surface (31, 32). Interestingly, Kamal et al. (33) identified an axonal membrane compartment that contains APP, BACE1, and PS1 and showed that fast anterograde axonal transport of this compartment is mediated by APP and kinesin-I, implying a traffic-regulating role for APP. Increased APP expression is also shown to decrease retrograde axonal transport of nerve growth factor (34). However, whether APP indeed regulates intracellular trafficking of proteins including BACE1 and PS1/γ-secretase requires further validation. In the present study we demonstrate that intracellular trafficking of PS1, as well as that of other γ-secretase components, but not BACE1, is regulated by APP. APP deficiency promotes cell surface delivery of PS1/γ-secretase complex and facilitates PS1/γ-secretase-mediated Notch cleavage. In addition, we find that PLD1 also regulates intracellular trafficking of PS1 through a different mechanism and more potently than APP.  相似文献   

2.
γ-Secretase is known to play a pivotal role in the pathogenesis of Alzheimer disease through production of amyloidogenic Aβ42 peptides. Early onset familial Alzheimer disease mutations in presenilin (PS), the catalytic core of γ-secretase, invariably increase the Aβ42:Aβ40 ratio. However, the mechanism by which these mutations affect γ-secretase complex formation and cleavage specificity is poorly understood. We show that our in vitro assay system recapitulates the effect of PS1 mutations on the Aβ42:Aβ40 ratio observed in cell and animal models. We have developed a series of small molecule affinity probes that allow us to characterize active γ-secretase complexes. Furthermore we reveal that the equilibrium of PS1- and PS2-containing active complexes is dynamic and altered by overexpression of Pen2 or PS1 mutants and that formation of PS2 complexes is positively correlated with increased Aβ42:Aβ40 ratios. These data suggest that perturbations to γ-secretase complex equilibrium can have a profound effect on enzyme activity and that increased PS2 complexes along with mutated PS1 complexes contribute to an increased Aβ42:Aβ40 ratio.β-Amyloid (Aβ)5 peptides are believed to play a causative role in Alzheimer disease (AD). Aβ peptides are generated from the processing of the amyloid precursor protein (APP) by two proteases, β-secretase and γ-secretase. Although γ-secretase generates heterogenous Aβ peptides ranging from 37 to 46 amino acids in length, significant work has focused mainly on the Aβ40 and Aβ42 peptides that are the major constituents of amyloid plaques. γ-Secretase is a multisubunit membrane aspartyl protease comprised of at least four known subunits: presenilin (PS), nicastrin (Nct), anterior pharynx-defective (Aph), and presenilin enhancer 2 (Pen2). Presenilin is thought to contain the catalytic core of the complex (14), whereas Aph and Nct play critical roles in the assembly, trafficking, and stability of γ-secretase as well as substrate recognition (5, 6). Lastly Pen2 facilitates the endoproteolysis of PS into its N-terminal (NTF) and C-terminal (CTF) fragments thereby yielding a catalytically competent enzyme (5, 710). All four proteins (PS, Nct, Aph1, and Pen2) are obligatory for γ-secretase activity in cell and animal models (11, 12). There are two homologs of PS, PS1 and PS2, and three isoforms of Aph1, Aph1aS, Aph1aL, and Aph1b. At least six active γ-secretase complexes have been reported (two presenilins × three Aph1s) (13, 14). The sum of apparent molecular masses of the four proteins (PS1-NTF/CTF ≈ 53 kDa, Nct ≈ 120 kDa, Aph1 ≈ 30 kDa, and Pen2 ≈ 10kDa) is ∼200 kDa. However, active γ-secretase complexes of varying sizes, ranging from 250 to 2000 kDa, have been reported (1519). Recently a study suggested that the γ-secretase complex contains only one of each subunit (20). Collectively these studies suggest that a four-protein complex around 200–250 kDa may be the minimal functional γ-secretase unit with additional cofactors and/or varying stoichiometry of subunits existing in the high molecular weight γ-secretase complexes. CD147 and TMP21 have been found to be associated with the γ-secretase complex (21, 22); however, their role in the regulation of γ-secretase has been controversial (23, 24).Mutations of PS1 or PS2 are associated with familial early onset AD (FAD), although it is debatable whether these familial PS mutations act as “gain or loss of function” alterations in regard to γ-secretase activity (2527). Regardless the overall outcome of these mutations is an increased ratio of Aβ42:Aβ40. Clearly these mutations differentially affect γ-secretase activity for the production of Aβ40 and Aβ42. Despite intensive studies of Aβ peptides and γ-secretase, the molecular mechanism controlling the specificity of γ-secretase activity for Aβ40 and Aβ42 production has not been resolved. It has been found that PS1 mutations affect the formation of γ-secretase complexes (28). However, the precise mechanism by which individual subunits alter the dynamics of γ-secretase complex formation and activity is largely unresolved. A better mechanistic understanding of γ-secretase activity associated with FAD mutations has been hindered by the lack of suitable assays and probes that are necessary to recapitulate the effect of these mutations seen in cell models and to characterize the active γ-secretase complex.In our present studies, we have determined the overall effect of Pen2 and PS1 expression on the dynamics of PS1- and PS2-containing complexes and their association with γ-secretase activity. Using newly developed biotinylated small molecular probes and activity assays, we revealed that expression of Pen2 or PS1 FAD mutants markedly shifts the equilibrium of PS1-containing active complexes to that of PS2-containing complexes and results in an overall increase in the Aβ42:Aβ40 ratio in both stable cell lines and animal models. Our studies indicate that perturbations to the equilibrium of active γ-secretase complexes by an individual subunit can greatly affect the activity of the enzyme. Moreover they serve as further evidence that there are multiple and distinct γ-secretase complexes that can exist within the same cells and that their equilibrium is dynamic. Additionally the affinity probes developed here will facilitate further study of the expression and composition of endogenous active γ-secretase from a variety of model systems.  相似文献   

3.
4.
5.
Complexes involved in the γ/ϵ-secretase-regulated intramembranous proteolysis of substrates such as the amyloid-β precursor protein are composed primarily of presenilin (PS1 or PS2), nicastrin, anterior pharynx defective-1 (APH1), and PEN2. The presenilin aspartyl residues form the catalytic site, and similar potentially functional polar transmembrane residues in APH1 have been identified. Substitution of charged (E84A, R87A) or polar (Q83A) residues in TM3 had no effect on complex assembly or activity. In contrast, changes to either of two highly conserved histidines (H171A, H197A) located in TM5 and TM6 negatively affected PS1 cleavage and altered binding to other secretase components, resulting in decreased amyloid generating activity. Charge replacement with His-to-Lys substitutions rescued nicastrin maturation and PS1 endoproteolysis leading to assembly of the formation of structurally normal but proteolytically inactive γ-secretase complexes. Substitution with a negatively charged side chain (His-to-Asp) or altering the structural location of the histidines also disrupted γ-secretase binding and abolished functionality of APH1. These results suggest that the conserved transmembrane histidine residues contribute to APH1 function and can affect presenilin catalytic activity.The anterior pharynx defective-1 (APH1)5 protein is an essential component of presenilin-dependent complexes required for the γ/ϵ-secretase activity (1). The multicomponent γ-secretase is responsible for the intramembrane proteolysis of a variety of substrates including the amyloid-β precursor protein (APP) and Notch receptor. Notch signaling is involved in a variety of important cell fate decisions during embryogenesis and adulthood (2). The γ/ϵ-secretase cleavage of APP protein is related to the pathogenesis of Alzheimer disease by releasing the 4-kDa amyloid β-peptide (Aβ) which accumulates as senile plaques in patients with Alzheimer disease (3, 4).The γ-complexes are composed of multispanning transmembrane proteins that include APH1 (5, 6), presenilin (PS1 or PS2) (710), PEN2 (5), and the type 1 transmembrane nicastrin (NCT) (11). All four components are essential for proteolytic activity, and loss of any single component destabilizes the complex, resulting in the loss of substrate cleavage. Conversely, co-expression of all four components increases γ-secretase activity (1214). During the maturation of the complexes, presenilins undergo an endoproteolytic cleavage to generate amino- and carboxyl-terminal fragments which remain associated as heterodimers in the active high molecular weight complexes (1518). Although the exact function of presenilins has been debated (19, 20), it has been proposed that the presenilins are aspartyl proteases with two transmembrane residues constituting the catalytic subunit (21). Analogous aspartyl catalytic dyads are found in the signal peptide peptidases (21, 22). Contributions from the other components are under investigation, and it has been shown, for example, that the large ectodomain of NCT plays a key role in substrate recognition (23, 24). It has also been shown that other proteins can regulate activity such as TMP21, a member of p24 cargo protein, which binds to the presenilin complexes and selectively modulates γ but not ϵ cleavage (25, 26).APH1 is a seven-transmembrane protein with a topology such that the amino terminus is oriented with the endoplasmic reticulum and the carboxyl terminus resides in the cytoplasm (6, 27). It is also expressed as different isoforms encoded by two genes in humans (APH1a on chromosome 1; APH1b on chromosome 15) or three genes in rodents (APH1a on chromosome 3; APH1b and APH1c on chromosome 9). APH1a has 55% sequence similarity with APH1b/APH1c, whereas APH1b and APH1c share 95% similarity. In addition to these different genes, APH1a is alternatively spliced to generate a short (APH1aS) and a long isoform (APH1aL). These two isoforms differ by the addition of 18 residues on the carboxyl-terminal part of APH1aL (28, 29). Deletion of APH1a in mice is embryonically lethal and is associated with developmental and patterning defects similar to those found in Notch, NCT, or PS1 null embryos (30, 31). In contrast to the essential nature of APH1a, the combined APH1b/c-deficient mice survive into adulthood (31). This suggests that APH1a is the major homologue involved in presenilin-dependent function during embryonic development. In addition, these different APH1 variants are constituents of distinct, proteolytically active presenilin-containing complexes and may, therefore, make unique contributions to γ-secretase activity (3032).Despite their importance to complex formation and function, the exact role of the APH1 isoforms in presenilin-dependent γ/ϵ-secretase activity remains under investigation. In the current study, several highly conserved polar and charged residues located within the transmembrane domains of APH1 were identified. Mutagenesis of two conserved histidine residues embedded in TM5 and TM6 (His-171 and His-197) lead to alterations in γ-secretase complex maturation and activity. The histidine residues contribute to APH1 function and are involved in stabilizing interactions with other γ-secretase components. These key histidines may also be physically localized near the presenilin active site and involved in the γ-secretase activity as shown by the decreased activity of γ-secretase complexes that are assembled with the His-mutants.  相似文献   

6.
7.
8.
9.
Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. β- and γ-secretases, and Aβ have been identified in lipid rafts in cultured cells, human and rodent brains, but the role of copper in lipid raft amyloidogenic processing is presently unknown. In this study, we found that copper modulates flotillin-2 association with cholesterol-rich lipid raft domains, and consequently Aβ synthesis is attenuated via copper-mediated inhibition of APP endocytosis. We also found that total cellular copper is associated inversely with lipid raft copper levels, so that under intracellular copper deficiency conditions, Aβ·copper complexes are more likely to form. This explains the paradoxical hypermetallation of Aβ with copper under tissue copper deficiency conditions in AD.Imbalance of metal ions has been recognized as one of the key factors in the pathogenesis of Alzheimer disease (AD).2 Aberrant interactions between copper or zinc with the β-amyloid peptide (Aβ) released into the glutamatergic synaptic cleft vicinity could result in the formation of toxic Aβ oligomers and aggregation into plaques characteristic of AD brains (reviewed in Ref. 1). Copper, iron, and zinc are highly concentrated in extracellular plaques (2, 3), and yet brain tissues from AD (46) and human β-amyloid precursor protein (APP) transgenic mice (710) are paradoxically copper deficient compared with age-matched controls. Elevation of intracellular copper levels by genetic, dietary, and pharmacological manipulations in both AD transgenic animal and cell culture models is able to attenuate Aβ production (7, 9, 1115). However, the underlying mechanism is at present unclear.Abnormal cholesterol metabolism is also a contributing factor in the pathogenesis of AD. Hypercholesterolemia increases the risk of developing AD-like pathology in a transgenic mouse model (16). Epidemiological and animal model studies show that a hypercholesterolemic diet is associated with Aβ accumulation and accelerated cognitive decline, both of which are further aggravated by high dietary copper (17, 18). In contrast, biochemical depletion of cholesterol using statins, inhibitors of 3-hydroxy-3-methyglutaryl coenzyme A reductase, and methyl-β-cyclodextrin, a cholesterol sequestering agent, inhibit Aβ production in animal and cell culture models (1925).Cholesterol is enriched in lipid rafts, membrane microdomains implicated in Aβ generation from APP cleavage by β- and γ-secretases. Recruitment of BACE1 (β-secretase) into lipid rafts increases the production of sAPPβ and Aβ (23, 26). The β-secretase-cleaved APP C-terminal fragment (β-CTF), and γ-secretase, a multiprotein complex composed of presenilin (PS1 or PS2), nicastrin (Nct), PEN-2 and APH-1, colocalize to lipid rafts (27). The accumulation of Aβ in lipid rafts isolated from AD and APP transgenic mice brains (28) provided further evidence that cholesterol plays a role in APP processing and Aβ generation.Currently, copper and cholesterol have been reported to modulate APP processing independently. However, evidence indicates that, despite tissue copper deficiency, Aβ·Cu2+ complexes form in AD that catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides (e.g. hydroxynonenal and malondialdehyde), which contribute to oxidative damage observed in AD (2935). The underlying mechanism leading to the formation of pathological Aβ·Cu2+ complexes is unknown. In this study, we show that copper alters the structure of lipid rafts, and attenuates Aβ synthesis in lipid rafts by inhibition of APP endocytosis. We also identify a paradoxical inverse relationship between total cellular copper levels and copper distribution to lipid rafts, which appear to possess a privileged pool of copper where Aβ is more likely to interact with Cu2+ under copper-deficiency conditions to form Aβ·Cu2+ complexes. These data provide a novel mechanism by which cellular copper deficiency in AD could foster an environment for potentially adverse interactions between Aβ, copper, and cholesterol in lipid rafts.  相似文献   

10.
γ-Secretase is a membrane protein complex that catalyzes intramembrane proteolysis of a variety of substrates including the amyloid β precursor protein of Alzheimer disease. Nicastrin (NCT), a single-pass membrane glycoprotein that harbors a large extracellular domain, is an essential component of the γ-secretase complex. Here we report that overexpression of a single chain variable fragment (scFv) against NCT as an intrabody suppressed the γ-secretase activity. Biochemical analyses revealed that the scFv disrupted the proper folding and the appropriate glycosyl maturation of the endogenous NCT, which are required for the stability of the γ-secretase complex and the intrinsic proteolytic activity, respectively, implicating the dual role of NCT in the γ-secretase complex. Our results also highlight the importance of the calnexin cycle in the functional maturation of the γ-secretase complex. The engineered intrabodies may serve as rationally designed, molecular targeting tools for the discovery of novel actions of the membrane proteins.γ-Secretase catalyzes intramembrane proteolysis of a variety of substrates including amyloid β precursor protein (APP)3 to generate amyloid β peptide (Aβ), the latter being a major component of senile plaques in the brains of Alzheimer disease patients. Thus, agents that inhibit γ-secretase activity could serve as an effective therapeutics for Alzheimer disease, whereas the γ-secretase activity plays important roles in cell signaling pathways including Notch signaling (1, 2). γ-Secretase consists of at least four integral membrane proteins, i.e. presenilin (PS), nicastrin (NCT), APH-1, and PEN-2, all of which are essential to the proteolytic activity (35). Molecular cellular and chemical biological analyses have revealed that PS forms a hydrophilic pore involving the transmembrane domain 6 and 7, where conserved catalytic aspartates reside to function as catalytic residues of γ-secretase complex (6, 7). APH-1 is a multipass membrane protein that plays a role in stabilization and trafficking of the γ-secretase complex (8), and PEN-2 is a cofactor for the activation and the regulation of the γ-secretase activity (3, 9).NCT, which was identified as a PS-binding protein (10), is a single-pass membrane protein that harbors an extracellular domain (ECD) with a number of N-glycosylation sites. In mammalian cells NCT undergoes Endo H-resistant complex glycosylation and acquires trypsin resistance during the assembly process of the γ-secretase complex (1117). Molecular and cellular analyses revealed that the trypsin resistance, presumably indicating the proper structural folding of NCT, might be directly linked to the enzymatic activity, whereas the complex glycosylation is dispensable. Moreover, multiple sequence alignment analyses revealed that NCT ECD have a similarity to an aminopeptidase (18), whereas certain catalytic residues are not conserved. Recently one study has suggested that NCT plays a critical role in substrate recognition (19). During the proteolytic process, NCT ECD captures the most N terminus of the substrate as a primary substrate receptor (i.e. exosite) for the γ-secretase via the aminopeptidase-like domain. However, this view has been recently challenged (20). Nevertheless, as structural information of NCT ECD is totally lacking, the functional role of the structural maturation of NCT in the formation and activity of the γ-secretase remains unclear.Molecular engineering of monoclonal antibodies opens a venue for the functional analyses of targeted molecule and the therapeutic intervention for several diseases (21). A single-chain antibody fragment (scFv) is comprised of heavy- and light-chain sequences of an antibody linked by a short linker and preserves binding abilities of its parental antibody. scFv can be expressed intracellularly as an intrabody (22, 23), which provides a powerful method for phenotypic knock-out of the genes. Intrabodies have been investigated as treatments for a variety of pathological conditions, including neurodegenerative diseases such as Parkinson disease and Huntington disease. Moreover, several recent publications have highlighted the therapeutic potential of intrabodies targeting intra- as well as extracellular epitopes (2429). Here, we generated scFv against NCT from an anti-NCT monoclonal antibody. Unexpectedly, the overexpression of the anti-NCT scFv as an intrabody abolished the proteolytic activity by the destabilization of the γ-secretase complex and the inappropriate glycosylation of NCT. This is the first example showing that engineered antibody would be a useful tool for the direct modulation of the γ-secretase complex and its activity.  相似文献   

11.
12.
13.
Proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases generates β-amyloid (Aβ) peptides, which accumulate in the brains of individuals affected by Alzheimer disease. Detergent-resistant membrane microdomains (DRM) rich in cholesterol and sphingolipid, termed lipid rafts, have been implicated in Aβ production. Previously, we and others reported that the four integral subunits of the γ-secretase associate with DRM. In this study we investigated the mechanisms underlying DRM association of γ-secretase subunits. We report that in cultured cells and in brain the γ-secretase subunits nicastrin and APH-1 undergo S-palmitoylation, the post-translational covalent attachment of the long chain fatty acid palmitate common in lipid raft-associated proteins. By mutagenesis we show that nicastrin is S-palmitoylated at Cys689, and APH-1 is S-palmitoylated at Cys182 and Cys245. S-Palmitoylation-defective nicastrin and APH-1 form stable γ-secretase complexes when expressed in knock-out fibroblasts lacking wild type subunits, suggesting that S-palmitoylation is not essential for γ-secretase assembly. Nevertheless, fractionation studies show that S-palmitoylation contributes to DRM association of nicastrin and APH-1. Moreover, pulse-chase analyses reveal that S-palmitoylation is important for nascent polypeptide stability of both proteins. Co-expression of S-palmitoylation-deficient nicastrin and APH-1 in cultured cells neither affects Aβ40, Aβ42, and AICD production, nor intramembrane processing of Notch and N-cadherin. Our findings suggest that S-palmitoylation plays a role in stability and raft localization of nicastrin and APH-1, but does not directly modulate γ-secretase processing of APP and other substrates.Alzheimer disease is the most common among neurodegenerative diseases that cause dementia. This debilitating disorder is pathologically characterized by the cerebral deposition of 39–42 amino acid peptides termed Aβ, which are generated by proteolytic processing of amyloid precursor protein (APP)2 by β- and γ-secretases (1, 2). The β-site APP cleavage enzyme 1 cleaves full-length APP within its luminal domain to generate a secreted ectodomain leaving behind a C-terminal fragment (β-CTF). γ-Secretase cleaves β-CTF within the transmembrane domain to release Aβ and APP intracellular C-terminal domain (AICD). γ-Secretase is a multiprotein complex, comprising at least four subunits: presenilins (PS1 and PS2), nicastrin, APH-1, and PEN-2 for its activity (3). PS1 is synthesized as a 42–43-kDa polypeptide and undergoes highly regulated endoproteolytic processing within the large cytoplasmic loop domain connecting putative transmembrane segments 6 and 7 to generate stable N-terminal (NTF) and C-terminal fragments (CTF) by an uncharacterized proteolytic activity (4). This endoproteolytic event has been identified as the activation step in the process of PS1 maturation as it assembles with other γ-secretase subunits (3). Nicastrin is a heavily glycosylated type I membrane protein with a large ectodomain that has been proposed to function in substrate recognition and binding (5), but this putative function has not been confirmed by others (6). APH-1 is a seven-transmembrane protein encoded by two human or three rodent genes that are alternatively spliced (7). Although PS1 (or PS2), nicastrin, APH-1, and PEN-2 are sufficient for γ-secretase processing of APP, a type I membrane protein, termed p23 (also referred toTMP21), was recently identified as a γ-secretase component that modulates γ-secretase activity and regulates secretory trafficking of APP (8, 9).A growing number of type I integral membrane proteins has been identified as γ-secretase substrates within the last few years, including Notch1 homologues, Notch ligands, Delta and Jagged, cell adhesion receptors N- and E-cadherins, low density lipoprotein receptor-related protein, ErbB-4, netrin receptor DCC, and others (10). Mounting evidence suggests that APP processing occurs within cholesterol- and sphingolipid-enriched lipid rafts, which are biochemically defined as detergentresistant membrane microdomains (DRM) (11, 12). Previously we reported that each of the γ-secretase subunits localizes in lipid rafts in post-Golgi and endosome membranes enriched in syntaxin 6 (13). Moreover, loss of γ-secretase activity by gene deletion or exposure to γ-secretase inhibitors results in the accumulation of APP CTFs in lipid rafts indicating that cleavage of APP CTFs likely occurs in raft microdomains (14). In contrast, CTFs derived from Notch1, Jagged2, N-cadherin, and DCC are processed by γ-secretase in non-raft membranes (14). The mechanisms underlying association of γ-secretase subunits with lipid rafts need further clarification to elucidate spatial segregation of amyloidogenic processing of APP in membrane microdomains.Post-translational S-palmitoylation is increasingly recognized as a potential mechanism for regulating raft association, stability, intracellular trafficking, and function of several cytosolic and transmembrane proteins (1517). S-palmitoylation refers to the addition of 16-carbon palmitoyl moiety to certain cysteine residues through thioester linkage. Cysteines close to transmembrane domains or membrane-associated domains in non-integral membrane proteins are preferred S-palmitoylation sites, although no conserved motif has been identified (18). Palmitoylation modifies numerous neuronal proteins, including postsynaptic density protein PSD-95 (19), a-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid receptors (20), nicotinic α7 receptors (21), neuronal t-SNAREs SNAP-25, synaptobrevin 2 and synaptogagmin (22, 23), neuronal growth-associated protein GAP-43 (24), protein kinase CLICK-III (CL3)/CaMKIγ (25), β-secretase (26), and Huntingtin (27). Although palmitoylation can occur in vitro without the involvement of an enzyme, a family of palmitoyltransferases that specifically catalyze S-palmitoylation has been identified (28, 29).In this study, we have identified S-palmitoylation of γ-secretase subunits nicastrin and APH-1, and characterized its role on DRM association, protein stability, and γ-secretase enzyme activities. We show that nicastrin is S-palmitoylated at Cys689, and APH-1 at Cys182 and Cys245. Mutagenesis of palmitoylation sites results in increased degradation of nascent nicastrin and APH-1 polypeptides and reduced association with DRM. Nevertheless, in cultured cells overexpression of S-palmitoylation-deficient nicastrin and APH-1 does not modulate γ-secretase processing of APP or other substrates.  相似文献   

14.
γ-Secretase is a proteolytic membrane complex that processes a variety of substrates including the amyloid precursor protein and the Notch receptor. Earlier we showed that one of the components of this complex, nicastrin (NCT), functions as a receptor for γ-secretase substrates. A recent report challenged this, arguing instead that the Glu-333 residue of NCT predicted to participate in substrate recognition only participates in γ-secretase complex maturation and not in activity per se. Here, we present evidence that Glu-333 directly participates in γ-secretase activity. By normalizing to the active pool of γ-secretase with two separate methods, we establish that γ-secretase complexes containing NCT-E333A are indeed deficient in intrinsic activity. We also demonstrate that the NCT-E333A mutant is deficient in its binding to substrates. Moreover, we find that the cleavage of substrates by γ-secretase activity requires a free N-terminal amine but no minimal length of the extracellular N-terminal stub. Taken together, these studies provide further evidence supporting the role of NCT in substrate recognition. Finally, because γ-secretase cleaves itself during its maturation and because NCT-E333A also shows defects in γ-secretase complex maturation, we present a model whereby Glu-333 can serve a dual role via similar mechanisms in the recruitment of both Type 1 membrane proteins for activity and the presenilin intracellular loop during complex maturation.The brains of Alzheimer disease patients are characterized by dense neuritic plaques that consist of the insoluble β-amyloid peptide (Aβ)2 and neurons containing neurofibrillary tangles of the Tau protein (1, 2). The Aβ peptide is produced via the sequential proteolysis of APP by β- and γ-secretase (3). γ-secretase is a multisubunit complex consisting of at least four proteins: presenilin (PS), NCT, APH-1, and PEN-2, all of which are necessary and sufficient for activity (49). The formation of the γ-secretase complex is tightly controlled, with an ordered assembly of subunits coupled to spatial restriction (10). It is believed that the last step of the complicated γ-secretase maturation and activation process involves in cis endoproteolysis of the PS holoprotein (1113). It is this form of γ-secretase with PS in its N- and C-terminal fragments (NTF and CTF, respectively) that represents the fully mature, proteolytically active enzyme.γ-Secretase is a unique protease that cleaves within the lipid bilayer a large number of Type 1 single transmembrane-spanning proteins that vary widely in their sequence and size (1416). In a previous report, we demonstrated that NCT functions as a substrate receptor for γ-secretase (4). In that report, we showed that NCT recruits substrates that have had their large extracellular domains first removed by an upstream protease in a process termed “ectodomain shedding.” This process generates a new, short extracellular stub with a free N terminus, which is required for proteolysis by γ-secretase. We also established that Glu-333 of NCT participates in activity within the larger context of the DYIGS and peptidase-like (DAP) domain, which shares distant homology to amino- and carboxypeptidases. A recent study by Chávez-Gutiérrez et al. (17) confirmed that mutations at the equivalent rodent residue impair γ-secretase. However, the authors attributed the reduction in activity to a role for Glu-333 in γ-secretase maturation but not directly in activity per se. Although a role for NCT and Glu-333 in γ-secretase assembly and maturation is consistent with our early work (4, 18, 19), the authors'' conclusion that mature γ-secretase complexes containing the Glu-333 mutant NCT are fully active presents a challenge to the model that NCT is a receptor for γ-secretase substrates in mature, active enzyme. Although PS-NTF or -CTF alone is an adequate measure of active γ-secretase complexes, Chávez-Gutiérrez et al. (17) measured specific activity by normalizing γ-secretase products to the sum of PS1-CTF and PEN-2 presumably due to the levels of PS-NTF/CTF by themselves being at the detection limit of Western blotting with electrochemiluminescence (ECL). Such an approach has caveats, as normalizing to the sum of PS1 and PEN-2 does not represent a measurement of the intrinsic activity per single, active enzyme; rather, this mode of normalization instead skews the data to minimize the effects of the mutations, especially when compounded with the unreliability of ECL measurement at the detection limit of Western blotting. Indeed, normalizing to the amount of mature, active γ-secretase in a rigorous, quantitative manner would be necessary to accurately compare the intrinsic activities of wild-type and mutant enzymes.In this study we used two γ-secretase reconstitution methods, including one that bypasses endoproteolysis and two separate normalization approaches to demonstrate that γ-secretase complexes containing NCT-E333A are indeed intrinsically less active than wild-type NCT. We show that this mutant is deficient in its ability to directly bind to γ-secretase substrates. Moreover, we confirm our observations with a second γ-secretase substrate, C83, which is itself the physiological product of α-secretase cleavage of APP. We also examine a series of substrate truncation mutants and find that γ-secretase can cleave substrates that lack the entire extracellular domain, provided that such substrates also contain a free N-terminal amine. Taken together, we conclude that Glu-333 participates directly in activity after γ-secretase complex maturation. Finally, we put forth a model wherein the dual role of Glu-333 in γ-secretase maturation and substrate recognition could be explained in the context of NCT being a substrate receptor. In this model Glu-333 partakes in the recruitment of not only the ectodomain-shed Type 1 membrane proteins but also of the intracellular loop of PS for its endoproteolysis, a hallmark event of γ-secretase maturation and activation.  相似文献   

15.
Perioperative factors including hypoxia, hypocapnia, and certain anesthetics have been suggested to contribute to Alzheimer disease (AD) neuropathogenesis. Desflurane is one of the most commonly used inhalation anesthetics. However, the effects of desflurane on AD neuropathogenesis have not been previously determined. Here, we set out to assess the effects of desflurane and hypoxia on caspase activation, amyloid precursor protein (APP) processing, and amyloid β-protein (Aβ) generation in H4 human neuroglioma cells (H4 naïve cells) as well as those overexpressing APP (H4-APP cells). Neither 12% desflurane nor hypoxia (18% O2) alone affected caspase-3 activation, APP processing, and Aβ generation. However, treatment with a combination of 12% desflurane and hypoxia (18% O2) (desflurane/hypoxia) for 6 h induced caspase-3 activation, altered APP processing, and increased Aβ generation in H4-APP cells. Desflurane/hypoxia also increased levels of β-site APP-cleaving enzyme in H4-APP cells. In addition, desflurane/hypoxia-induced Aβ generation could be reduced by the broad caspase inhibitor benzyloxycarbonyl-VAD. Finally, the Aβ aggregation inhibitor clioquinol and γ-secretase inhibitor L-685,458 attenuated caspase-3 activation induced by desflurane/hypoxia. In summary, desflurane can induce Aβ production and caspase activation, but only in the presence of hypoxia. Pending in vivo confirmation, these data may have profound implications for anesthesia care in elderly patients, and especially those with AD.An estimated 200 million patients worldwide undergo surgery each year. Several reports have suggested that anesthesia and surgery may facilitate development of Alzheimer disease (AD)4 (13). A recent study also reported that patients having coronary artery bypass graft surgery under general anesthesia are at increased risk for AD as compared with those having percutaneous transluminal coronary angioplasty under local anesthesia (4).Genetic evidence, confirmed by neuropathological and biochemical findings, indicates that excessive production and/or accumulation of amyloid β-protein (Aβ) play a fundamental role in the pathology of AD (reviewed in Refs. 5 and 6). Aβ is produced via serial proteolysis of amyloid precursor protein (APP) by aspartyl protease β-site APP-cleaving enzyme (BACE), or β-secretase, andγ-secretase. BACE cleaves APP to generate a 99-residue membrane-associated C terminus fragment (APP-C99). APP-C99 is further cleaved by γ-secretase to release 4-kDa Aβ and β-amyloid precursor protein intracellular domain (79). Presenilin and γ-secretase co-fractionate as a detergent-sensitive, high molecular weight complex (10) that includes at least three other proteins, nicastrin/APH-2, APH-1, and PEN-2, all of which are necessary and sufficient for γ-secretase activity (1113). Increasing evidence indicates that apoptosis is associated with a variety of neurodegenerative disorders, including AD (Refs. 1417; reviewed in Ref. 18). Aβ has been shown to cause caspase activation and apoptosis, which can in turn potentiate Aβ generation (16, 1928). Finally, fibrillar aggregates of Aβ and oligomeric species of Aβ are more neurotoxic (2937).Perioperative factors, including hypoxia (3842), hypocapnia (43), and anesthetics (4447), have been reported to potentially contribute to AD neuropathogenesis. These perioperative factors may also cause post-operative cognitive dysfunction, a dementia associated with surgery and anesthesia, by triggering AD neuropathogenesis.Isoflurane, sevoflurane, and desflurane are the most commonly used inhalation anesthetics. It has been reported that isoflurane enhances the oligomerization and cytotoxicity of Aβ (44) and induces apoptosis (4851). Our recent studies have shown that a clinically relevant concentration of isoflurane can lead to caspase-3 activation, decrease cell viability, alter APP processing, and increase Aβ generation in human H4 neuroglioma cells overexpressing human APP (4547). Loop et al. (49) reported that isoflurane and sevoflurane, but not desflurane, can induce caspase activation and apoptosis in human T lymphocytes. However, effects of desflurane and desflurane plus other perioperative risk factors, e.g. hypoxia, on APP processing and Aβ generation have not been assessed.In the present study, we set out to determine effects of desflurane, hypoxia, and the combination of the two (desflurane/hypoxia) on caspase-3 activation, APP processing, and Aβ generation in H4 human neuroglioma cells (H4 naïve cells) and H4 naïve cells stably transfected to express full-length (FL) APP (H4-APP cells). We also investigated whether the caspase inhibitor, Z-VAD, the γ-secretase inhibitor L-685,458, and the Aβ aggregation inhibitor clioquinol could attenuate desflurane/hypoxia-induced caspase-3 activation and Aβ generation.  相似文献   

16.
The amyloid precursor protein (APP) plays a central role in Alzheimer disease (AD) pathogenesis because sequential cleavages by β- and γ-secretase lead to the generation of the amyloid-β (Aβ) peptide, a key constituent in the amyloid plaques present in brains of AD individuals. In several studies APP has recently been shown to form homodimers, and this event appears to influence Aβ generation. However, these studies have relied on APP mutations within the Aβ sequence itself that may affect APP processing by interfering with secretase cleavages independent of dimerization. Therefore, the impact of APP dimerization on Aβ production remains unclear. To address this question, we compared the approach of constitutive cysteine-induced APP dimerization with a regulatable dimerization system that does not require the introduction of mutations within the Aβ sequence. To this end we generated an APP chimeric molecule by fusing a domain of the FK506-binding protein (FKBP) to the C terminus of APP. The addition of the synthetic membrane-permeant drug AP20187 induces rapid dimerization of the APP-FKBP chimera. Using this system we were able to induce up to 70% APP dimers. Our results showed that controlled homodimerization of APP-FKBP leads to a 50% reduction in total Aβ levels in transfected N2a cells. Similar results were obtained with the direct precursor of β-secretase cleavage, C99/SPA4CT-FKBP. Furthermore, there was no modulation of different Aβ peptide species after APP dimerization in this system. Taken together, our results suggest that APP dimerization can directly affect γ-secretase processing and that dimerization is not required for Aβ production.The mechanism of β-amyloid protein (Aβ)2 generation from the amyloid precursor protein is of major interest in Alzheimer disease research because Aβ is the major constituent of senile plaques, one of the neuropathological hallmarks of Alzheimer disease (1, 2). In the amyloidogenic pathway Aβ is released from the amyloid precursor protein (APP) (3) after sequential cleavages by β-secretase BACE1 (46) and by the γ-secretase complex (7, 8). BACE1 cleavage releases the large ectodomain of APP while generating the membrane-anchored C-terminal APP fragment (CTF) of 99 amino acids (C99). Cleavage of β-CTF by γ-secretase leads to the secretion of Aβ peptides of various lengths and the release of the APP intracellular domain (AICD) into the cytosol (911). The γ-secretase complex consists of at least four proteins: presenilin, nicastrin, Aph-I, and Pen-2 (12). Presenilin is thought to be the catalytic subunit of the enzyme complex (13), but how the intramembrane scission is carried out remains to be elucidated. Alternatively, APP can first be cleaved in the non-amyloidogenic pathway by α-secretase within the Aβ domain between Lys-16 and Leu-17 (14, 15). This cleavage releases the APP ectodomain (APPsα) while generating the membrane-bound C-terminal fragment (α-CTF) of 83 amino acids (C83). The latter can be further processed by the γ-secretase complex, resulting in the secretion of the small 3-kDa fragment p3 and the release of AICD.APP, a type I transmembrane protein (16) of unclear function, may act as a cell surface receptor (3). APP and its two homologues, APLP1 and APLP2, can dimerize in a homotypic or heterotypic manner and, in so doing, promote intercellular adhesion (17). In vivo interaction of APP, APLP1, and APLP2 was demonstrated by cross-linking studies from brain homogenates (18). To date at least four domains have been reported to promote APP dimerization; that is, the E1 domain containing the N-terminal growth factor-like domain and copper binding domain (17), the E2 domain containing the carbohydrate domain in the APP ectodomain (19), the APP juxtamembrane region (20), and the transmembrane domain (21, 22). In the latter domain the dimerization appears to be mediated by the GXXXG motif near the luminal face of the transmembrane region (21, 23). In addition to promoting cell adhesion, APP dimerization has been proposed to increase susceptibility to cell death (20, 24).Interestingly, by introducing cysteine mutations into the APP juxtamembrane region, it was shown that stable dimers through formation of these disulfide linkages result in significantly enhanced Aβ production (25). This finding is consistent with the observation that stable Aβ dimers are found intracellularly in neurons and in vivo in brain (26). Taken together, these results have led to the idea that APP dimerization can positively regulate Aβ production. However, other laboratories have not been able to confirm some of these observations using slightly different approaches (23, 27).To further address the question of how dimerization of APP affects cleavage by α-, β-, and γ-secretase, we chose to test this with a controlled dimerization system. Accordingly, we engineered a chimeric APP molecule by fusing a portion of the FK506-binding protein (FKBP) to the C terminus of APP such that the addition of the synthetic membrane-permeant bifunctional compound, AP20187, will induce dimerization of the APP-FKBP chimera in a controlled manner by binding to the FKBP domains. Using this system, efficient dimerization of APP up to 70% can be achieved in a time and concentration-dependent fashion. Our studies showed that controlled homodimerization of APP-FKBP leads to decreased total Aβ levels in transfected N2a cells. Homodimerization of the β-CTF/C99 fragment, the direct precursor of γ-secretase cleavage, showed comparable results. In addition, induced dimerization of APP did not lead to a modulation of different Aβ peptides as it was reported for GXXXG mutants within the transmembrane domain of APP (21).  相似文献   

17.
18.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

19.
Amyloid-β (Aβ) peptides, generated by the proteolysis of β-amyloid precursor protein by β- and γ-secretases, play an important role in the pathogenesis of Alzheimer disease. Inflammation is also important. We recently reported that prostaglandin E2 (PGE2), a strong inducer of inflammation, stimulates the production of Aβ through EP2 and EP4 receptors, and here we have examined the molecular mechanism. Activation of EP2 and EP4 receptors is coupled to an increase in cellular cAMP levels and activation of protein kinase A (PKA). We found that inhibitors of adenylate cyclase and PKA suppress EP2, but not EP4, receptor-mediated stimulation of the Aβ production. In contrast, inhibitors of endocytosis suppressed EP4, but not EP2, receptor-mediated stimulation. Activation of γ-secretase was observed with the activation of EP4 receptors but not EP2 receptors. PGE2-dependent internalization of the EP4 receptor was observed, and cells expressing a mutant EP4 receptor lacking the internalization activity did not exhibit PGE2-stimulated production of Aβ. A physical interaction between the EP4 receptor and PS-1, a catalytic subunit of γ-secretases, was revealed by immunoprecipitation assays. PGE2-induced internalization of PS-1 and co-localization of EP4, PS-1, and Rab7 (a marker of late endosomes and lysosomes) was observed. Co-localization of PS-1 and Rab7 was also observed in the brain of wild-type mice but not of EP4 receptor null mice. These results suggest that PGE2-stimulated production of Aβ involves EP4 receptor-mediated endocytosis of PS-1 followed by activation of the γ-secretase, as well as EP2 receptor-dependent activation of adenylate cyclase and PKA, both of which are important in the inflammation-mediated progression of Alzheimer disease.Alzheimer disease (AD)2 is the most common neurodegenerative disorder of the central nervous system and the leading cause of adult onset dementia. AD is characterized pathologically by the accumulation of tangles and senile plaques. Senile plaques are composed of the amyloid-β (Aβ) peptides Aβ40 and Aβ42 (1, 2). To generate Aβ, β-amyloid precursor protein (APP) is first cleaved by β-secretase and then by γ-secretase. Cleavage of APP by α-secretase produces non-amyloidogenic peptides (3, 4). The γ-secretase is an aspartyl protease complex composed of four core components, including presenilin (PS) 1 and PS2 (5). Early onset familial AD is linked to three genes, APP, PS1, and PS2 (5, 6), strongly suggesting that γ-secretase-dependent production of Aβ is a key factor in the pathogenesis of AD. Therefore, cellular factors that affect the γ-secretase-dependent production of Aβ may be good targets for the development of drugs to prevent and treat AD.Both APP and PS-1 are transmembrane proteins, and their intracellular localization is controlled by secretory and endocytic pathways. These proteins are modified in the endoplasmic reticulum and trafficked to the cell surface through the trans-Golgi network (TGN). Then, they are internalized again and trafficked to early endosomes. Next, they are trafficked to late endosomes and lysosomes (LEL), which are recycling endosomes that are targeted to the cell surface or the TGN (711). The production of Aβ seems to occur in a broad range of cellular compartments including the cell surface, TGN, and endosomes (12). Abnormalities of secretory and endocytic pathways have been observed in the brains of AD patients (9, 13). Importantly, factors that control these vesicle transport systems affect the production of Aβ. For example, overproduction of Rab5, a factor essential for traffic of vesicles to early endosomes, has been shown to stimulate the production of Aβ (14), and SorL1 has been shown to reduce the production of Aβ by stimulating the traffic of APP in early endosomes to the TGN (15, 16).It has been suggested that inflammation is important in the pathogenesis of AD; chronic inflammation has been observed in the brains of AD patients, and trauma to the brain and ischemia, both of which can activate inflammation, are major risk factors for AD (1719). Cyclooxygenase (COX) is essential for the synthesis of prostaglandin E2 (PGE2), a potent inducer of inflammation and has two subtypes, COX-1 and COX-2. COX-1 is expressed constitutively, whereas expression of COX-2 is induced under inflammatory conditions and is responsible for the progression of inflammation (2022). The following evidences of the involvement of PGE2 (and COX-2) in the progression of AD suggest that they are good targets for the development of AD drugs: (i) Elevated levels of PGE2 and overexpression of COX-2 have been observed in the brains of AD patients (2325); (ii) the extent of COX-2 expression correlates with the amount of Aβ and the degree of progression of AD pathogenesis (26); (iii) transgenic mice constitutively overexpressing COX-2 show aging-dependent neural apoptosis and memory dysfunction (27); (iv) prolonged use of nonsteroidal anti-inflammatory drugs, inhibitors of COX, delays the onset and reduces the risk of AD (28); (v) PGE2 stimulates the production of reactive oxygen species in microglia cells, resulting in activation of β-secretase (29).We recently reported that PGE2 stimulates the production of Aβ in human embryonic kidney (HEK) 293 and human neuroblastoma (SH-SY5Y) cells that stably express a form of APP with two mutations (K651N/M652L) (APPsw) that elevate cellular and secreted levels of Aβ (30). Similar results were reported by another group (31). Using agonists and antagonists specific for each of the four PGE2 receptors (EP1, EP2, EP3, and EP4), we found that EP4 receptors alone and also both EP2 and EP4 receptors are involved in PGE2-stimulated production of Aβ in HEK293 or SH-SY5Y cells, respectively (30). Furthermore, experiments with transgenic mice suggest that EP2 and EP4 receptors are involved in the production of Aβ in vivo (30). Based on these results, we propose that antagonists of the EP2 and/or EP4 receptors may be therapeutically beneficial for the treatment of AD. Understanding the mechanism governing EP2 and EP4 receptor-mediated stimulation of production of Aβ by PGE2 will be important for such drug development.Activation of EP2 and EP4 receptors causes activation of adenylate cyclase and an increase in the cellular level of cAMP (32). We have shown that an EP4 receptor agonist or both EP2 and EP4 receptor agonists increase the cellular level of cAMP in HEK293 or SH-SY5Y cells, respectively, and that a cAMP analogue, 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP), increases the level of Aβ in HEK293 cells (30). These findings suggest that the cellular level of cAMP is important for PGE2-stimulated production of Aβ. An increase in the cellular level of cAMP is known to activate protein kinase A (PKA), which is important for cAMP-regulated intracellular signal transduction (33). However, an inhibitor of PKA, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide (H-89), does not block PGE2-stimulated production of Aβ in HEK293 cells (30). Other cAMP-regulated signal transduction factors, such as phosphatidylinositol 3-kinase and Epac (exchange protein directly activated by cAMP), were also shown not to be involved in PGE2-stimulated production of Aβ in HEK293 cells (30). Thus, the mechanism whereby the activation of EP2 and EP4 receptors stimulates the production of Aβ has remained unknown. In this study, by using inhibitors of adenylate cyclase and PKA, we found that activation of the EP2 receptor stimulates production of Aβ through activation of adenylate cyclase and PKA. We also propose that activation of the EP4 receptor causes its co-internalization with PS-1 (γ-secretase) into endosomes and that this co-internalization is important for EP4 receptor-mediated stimulation of Aβ production by PGE2 through the activation of γ-secretase.  相似文献   

20.
Molecular pathways underlying the neurotoxicity and production of amyloid β protein (Aβ) represent potentially promising therapeutic targets for Alzheimer''s disease (AD). We recently found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice while promoting cofilin activation and mitochondrial dysfunction. Translocation of cofilin to mitochondria and induction of cofilin–actin pathology require the activation/dephosphorylation of cofilin by Slingshot homolog 1 (SSH1) and cysteine oxidation of cofilin. In this study, we found that endogenous RanBP9 positively regulates SSH1 levels and mediates Aβ-induced translocation of cofilin to mitochondria and induction of cofilin–actin pathology in cultured cells, primary neurons, and in vivo. Endogenous level of RanBP9 was also required for Aβ-induced collapse of growth cones in immature neurons (days in vitro 9 (DIV9)) and depletion of synaptic proteins in mature neurons (DIV21). In vivo, amyloid precursor protein (APP)/presenilin-1 (PS1) mice exhibited 3.5-fold increased RanBP9 levels, and RanBP9 reduction protected against cofilin–actin pathology, synaptic damage, gliosis, and Aβ accumulation associated with APP/PS1 mice. Brains slices derived from APP/PS1 mice showed significantly impaired long-term potentiation (LTP), and RanBP9 reduction significantly enhanced paired pulse facilitation and LTP, as well as partially rescued contextual memory deficits associated with APP/PS1 mice. Therefore, these results underscore the critical importance of endogenous RanBP9 not only in Aβ accumulation but also in mediating the neurotoxic actions of Aβ at the level of synaptic plasticity, mitochondria, and cofilin–actin pathology via control of the SSH1-cofilin pathway in vivo.The defining pathological hallmark of Alzheimer''s disease (AD) is the accumulation of amyloid β protein (Aβ) in brain associated with tau pathology, synapse loss, cytoskeletal aberrations, mitochondrial dysfunction, and cognitive decline. The generation of Aβ occurs via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) by beta site APP cleaving enzyme 1 (BACE1) and the presenilin (PS) complex, respectively.1 Soluble oligomeric forms of Aβ are thought to be the most toxic species, resulting in synaptic loss and downstream neurotoxicity.2 Despite the requirement for Tau in multiple aspects of Aβ-induced neurotoxicity,3 a large knowledge gap exists as to how the Aβ oligomer-induced neurotoxic signals are transduced intracellularly to impair synaptic plasticity, eventually leading to neurodegeneration. Both Aβ and Tau promote cofilin–actin pathology,4, 5 cofilin–actin pathology is widespread in AD brains,6 and cofilin activity is also increased in AD brains.7 Cofilin normally functions as a key regulator of actin dynamics that destabilizes filamentous actin (F-actin). Cofilin is inactivated by phosphorylation on Ser3 by LIM kinase 1 (LIMK1), whereas its dephosphorylation by Slingshot homolog 1 (SSH1) activates cofilin.4 Upon oxidative stress and/or Ca2+ elevation,4, 8, 9 SSH1 is activated and active cofilin becomes oxidized on cysteine residues, resulting in rapid mitochondrial translocation to promote apoptosis and induction of cofilin–actin pathology.10, 11 An early and consistent impairment secondary to Aβ oligomer treatment in primary neurons is the shrinkage of dendritic spines12 involving the rearrangement of F-actin cytoskeleton in spines and loss of spine-associated proteins such as postsynaptic density-95 (PSD95) and Drebrin,13, 14 as well as impaired mitochondrial function.15, 16We recently found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice.17, 18 Moreover, RanBP9 is significantly increased in brains of AD patients and the J20 APP transgenic model.18, 19 In studying the trafficking of APP, we also found that RanBP9 overexpression not only promotes the endocytosis of APP but also those of LRP and β1-integrin, the latter resulting in disassembly of integrin-associated focal complexes (talin and vinculin).20 In addition, RanBP9 overexpression promotes cofilin activation and the translocation of cofilin to mitochondria, resulting in overall mitochondrial dysfunction.9, 19 However, how RanBP9 activates cofilin is unknown, and it is not clear whether reduction in endogenous RanBP9 protects against Aβ oligomer-induced deficits in synaptic plasticity, cofilin-dependent pathology, Aβ accumulation, and memory impairment. Here we report that short interfering ribonucleic acid (siRNA) or genetic reduction in RanBP9 significantly reduces SSH1 levels and mitigates Aβ-induced translocation of cofilin to mitochondria, cofilin–actin rod/aggregate formation, depletion of synaptic proteins, deficits in synaptic plasticity, Aβ accumulation, and contextual memory deficits in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号