首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel insights into habitat suitability for two Unionida freshwater mussels, Castalia ambigua Lamarck, 1819 (Hyriidae) and Anodontites elongatus (Swainson, 1823) (Mycetopodidae), are presented on the basis of hydraulic variables linked with the riverbed in six 500‐m reaches in an eastern Amazonian river basin. Within the reaches, there was strong habitat heterogeneity in hydrodynamics and substrate composition. In addition, we investigated stressors based on landscape modification that are associated with declines in mussel density. We measured hydraulic variables for each 500‐m reach, and landscape stressors at two spatial scales (subcatchment and riparian buffer forest). We used the Random Forest algorithm, a tree‐based model, to predict the hydraulic variables linked with habitat suitability for mussels, and to predict which landscape stressors were most associated with mussel density declines. Both mussel species were linked with low substrate heterogeneity and greater riverbed stability (low Froude and Reynolds numbers), especially at high flow (low stream power). Different sediment grain size preferences were observed between mussel species: Castalia ambigua was associated with medium sand and Anodontites elongatus with medium and fine sand. Declines in mussel density were associated with modifications linked to urbanization at small scales (riparian buffer forest), especially with percent of and distance from rural settlements, distance to the nearest street, and road density. In summary, the high variance explained in both hydraulic and landscape models indicated high predictive power, suggesting that our findings may be extrapolated and used as a baseline to test hypotheses of habitat suitability in other Amazonian rivers for Castalia ambigua and Anodontites elongatus and also for other freshwater mussel species. Our results highlight the urgent need for aquatic habitat conservation to maintain sheltered habitats during high flow as well as mitigate the effects of landscape modifications at the riparian buffer scale, both of which are important for maintaining dense mussel populations and habitat quality.  相似文献   

2.
1. We investigated the diversity and distribution of freshwater mussels at 40 sites in an agricultural catchment, the River Raisin in south‐eastern Michigan, to relate mussel assemblages and individual taxa to reach and catchment‐scale variables. Unionids were surveyed by timed searches in 100‐m reaches, and in‐stream and riparian habitat were quantified as well as flow, water chemistry and channel morphology. Land use/cover and surficial geology were determined for site subcatchments and riparian buffers. 2. Some 21 mussel species were found overall; richness ranged from 0 to 12 living species per site. From the upper to middle to lower catchment, the number of individuals, number of species, Shannon–Weaver diversity and relative abundance of intolerant unionids all declined significantly. 3. Four groupings based on overall mussel diversity and abundance were significantly related to reach‐scale habitat variables. The richest mussel assemblages were associated with sites with higher overall habitat quality, greater flow stability, less fine substratum, and lower specific conductance. 4. Stepwise multiple regressions revealed that the distribution and abundance of the total mussel assemblage, as well as the most common species, could be predicted from a combination of reach‐ and catchment‐scale variables (R2 = 0.63 for total mussels, R2 = 0.51–0.86 for individual species). 5. Flow stability, substratum composition and overall reach habitat quality were the most commonly identified reach‐scale variables, and measures of surficial geology were the most effective catchment‐scale variables. The spatial pattern of geology is likely to be responsible for the diversity gradient from the upper to the lower catchment. 6. Prior studies, attempting to explain mussel distributions from local habitat features alone, have found relatively weak relationships. By employing a combination of reach‐ and catchment‐scale habitat variables, this study was able to account for a substantial amount of the spatial variability in mussel distributions.  相似文献   

3.
1. The hydrologic connectivity between landscape elements and streams means that fragmentation of terrestrial habitats could affect the distribution of stream faunas at multiple spatial scales. We investigated how catchment‐ and site‐scale influences, including proportion and position of forest cover within a catchment, and presence of riparian forest cover affected the distribution of a diadromous fish. 2. The occurrence of koaro (Galaxias brevipinnis) in 50‐m stream reaches with either forested or non‐forested riparian margins at 172 sites in 24 catchments on Banks Peninsula, South Island, New Zealand was analysed. Proportions of catchments forested and the dominant position (upland or lowland) of forest within catchments were determined using geographical information system spatial analysis tools. 3. Multivariate analysis of variance indicated forest position and proportion forested at the catchment accounted for the majority of the variation in the overall proportion of sites in a catchment with koaro. 4. Where forest was predominantly in the lower part of the catchments, the presence of riparian cover was important in explaining the proportion of sites with koaro. However, where forest was predominantly in the upper part of the catchment, the effect of riparian forest was not as strong. In the absence of riparian forest cover, no patterns of koaro distribution with respect to catchment forest cover or forest position were detected. 5. These results indicate that landscape elements, such as the proportion and position of catchment forest, operating at catchment‐scales, influence the distribution of diadromous fish but their influence depends on the presence of riparian vegetation, a site‐scale factor.  相似文献   

4.
We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.  相似文献   

5.
Abstract River and stream rehabilitation projects are increasing in number, but the success or failure of these projects has rarely been evaluated, and the extent to which buffers can restore riparian and stream function and species composition is not well understood. In New Zealand the widespread conversion of forest to agricultural land has caused degradation of streams and riparian ecosystems. We assessed nine riparian buffer zone schemes in North Island, New Zealand that had been fenced and planted (age range from 2 to 24 years) and compared them with unbuffered control reaches upstream or nearby. Macroinvertebrate community composition was our prime indicator of water and habitat quality and ecological functioning, but we also assessed a range of physical and water quality variables within the stream and in the riparian zone. Generally, streams within buffer zones showed rapid improvements in visual water clarity and channel stability, but nutrient and fecal contamination responses were variable. Significant changes in macroinvertebrate communities toward “clean water” or native forest communities did not occur at most of the study sites. Improvement in invertebrate communities appeared to be most strongly linked to decreases in water temperature, suggesting that restoration of in‐stream communities would only be achieved after canopy closure, with long buffer lengths, and protection of headwater tributaries. Expectations of riparian restoration efforts should be tempered by (1) time scales and (2) spatial arrangement of planted reaches, either within a catchment or with consideration of their proximity to source areas of recolonists.  相似文献   

6.
7.
8.
  • 1 We used 94 sites within the Northern Lakes and Forests ecoregion spanning Minnesota, Wisconsin and Michigan to identify environmental variables at the catchment, reach and riparian scales that influence stream macroinvertebrates. Redundancy analyses (RDA) found significantly influential variables within each scale and compared their relative importance in structuring macroinvertebrate assemblages.
  • 2 Environmental variables included landcover, geology and groundwater delivery estimates at the catchment scale, water chemistry, channel morphology and stream habitat at the reach scale, and landcover influences at three distances perpendicular to the stream at the riparian scale. Macroinvertebrate responses were characterised with 22 assemblage attributes, and the relative abundance and presence/absence of 66 taxa.
  • 3 Each scale defined macroinvertebrates along an erosional to depositional gradient. Wisconsin's macroinvertebrate index of biotic integrity, Ephemeroptera–Plecoptera–Trichoptera taxa and erosional taxa corresponded with forest streams, whereas organic pollution tolerant, Chironomidae and depositional taxa corresponded with wetland streams. Reach scale analyses defined the gradient similarly as dissolved oxygen and wide, shallow channels (erosional) opposed instream macrophytes and pool habitats (depositional). Riparian forests within 30 m of the stream coincided with an erosional assemblage and biotic integrity.
  • 4 Next, we combined all significant environmental variables across scales to compare the relative influence of each spatial scale on macroinvertebrates. Partial RDA procedures described how much of the explained variance was attributable to each spatial scale and each interrelated scale combination.
  • 5 Our results appeared consistent with the concept of hierarchical functioning of scale in which large‐scale variables restrict the potential for macroinvertebrate traits or taxa at smaller spatial scales. Catchment and reach variables were equally influential in defining assemblage attributes, whereas the reach scale was more influential in determining relative abundance and presence/absence.
  • 6 Ultimately, comprehending the relative influence of catchment and reach scale properties in structuring stream biota will assist prioritising the scale at which to rehabilitate, manage and derive policies for stream ecosystem integrity.
  相似文献   

9.
10.
1. Studies of North American streams have shown that hydraulic parameters and stream geomorphology can explain unionid mussel abundance at both the reach and catchment scale. However, few studies have examined applicability of hydrogeomorphic variables across broader spatial scales, such as across whole catchments, or have elucidated conditions under which spates can affect mussel populations in streams. 2. We quantified freshwater mussel abundance and species richness and their physical habitat at 24 sites in eight streams in southern Appalachian catchments in 2000 and 2001. In addition, we modelled site‐specific hydraulic parameters during summer baseflow and bankfull stages to estimate high‐ and low‐discharge conditions, respectively. 3. Mussel abundance was related to stream geomorphology, whereas richness was related to stream size. Baseflow habitat parameters explained only minor variation in abundance or richness, and both measures were highly correlated with mean current velocity or stream size. Bankfull shear stress composed a relatively low proportion of overall mussel habitat variability, but it accounted for significant variation in abundance and richness. 4. Mussel abundance was highly variable at sites subject to low‐shear stress during spates, whereas abundance always was low at sites subject to high‐shear stress. These data suggest that habitat conditions during floods, rather than those at summer baseflow, limit the abundance of mussels in Appalachian streams. These data also suggest that mussel abundance and assemblage structure may be sensitive to any changes in channel geomorphology and hydraulic conditions that might result from land use in the catchment.  相似文献   

11.
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.  相似文献   

12.
An important goal in aquatic ecology is to determine the interacting variables that regulate community structure; however, complex biotic and abiotic interactions coupled with the significance of scale have confounded the interpretation of community data. We evaluated stream and riparian habitat features in southeastern Oklahoma, USA at a range of spatial scales from local, in-stream variables to large-scale, regional characteristics to address the following questions: (1) How much variation in trichopteran community composition can be attributed to local, regional, and spatial variables? and (2) What environmental variables are most important in determining trichopteran community structure? We collected data on caddisfly community structure, local and regional environmental variables, and spatial location on the landscape from 25 sites in four rivers. We analyzed these data using canonical correspondence analysis (CCA) and variation partitioning. Our analysis explained approximately 60% of the variation in caddisfly community composition. We found that local and regional environmental variables were near equal in importance in governing caddisfly communities, with each accounting for approximately a quarter of the explained variation. Although pure spatial variables were less important, the amount of variation shared among spatial variables and local and regional variables was substantial, indicating that biogeographic history is also key to understanding caddisfly distributions. We also found a strong influence of human landuse (i.e., percent of land in agriculture, distance to roads) on caddisfly community composition. Our study indicated that communities are influenced by factors across scales, and that bioassessments should focus on not only local habitat conditions, but also incorporate larger-scale factors.  相似文献   

13.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

14.
A mechanistic understanding of factors that structure spatiotemporal community composition is a major challenge in microbial ecology. Our study of microbial communities in the headwaters of three freshwater stream networks showed significant community changes at the small spatial scale of benthic habitats when compared to changes at mid- and large-spatial scales associated with stream order and catchment. Catchment (which included temperate and tropical catchments) had the strongest influence on community composition followed by habitat type (epipsammon or epilithon) and stream orders. Alpha diversity of benthic microbiomes resulted from interactions between catchment, habitat, and canopy. Epilithon contained relatively more Cyanobacteria and algae while Acidobacteria and Actinobacteria proportions were higher in epipsammic habitats. Turnover from replacement created ~60%–95% of beta diversity differences among habitats, stream orders, and catchments. Turnover within a habitat type generally decreased downstream indicating longitudinal linkages in stream networks while between habitat turnover also shaped benthic microbial community assembly. Our study suggests that factors influencing microbial community composition shift in dominance across spatial scales, with habitat dominating locally and catchment dominating globally.  相似文献   

15.
1. To evaluate the spatial extent of the effects of forest cover on stream ecosystems, we measured algae, invertebrate, and fish biomass and invertebrate and fish community structure in 38 small first- to third-order streams in the National Capital Region of Canada along with forest cover at different spatial scales.
2. We considered 55 spatial scales of forest cover including several buffer widths (doubling 10–320 m) and lengths (doubling 10–1280 m, entire riparian distance upstream from sampling area) and entire catchments to determine which spatial scale maximized the correlation with biomass and metrics of community structure.
3. The proportion of variability in biomass and structural metrics explained by forest cover generally increased with increasing scale, suggesting that catchment-wide disturbances are the most influential determinants of benthic and fish communities.
4. Catchment forest cover explained more variation in algal (adjusted r 2   =   0.54), invertebrate (adjusted r 2   =   0.51) and fish (adjusted r 2   =   0.33) biomass than structural metrics of invertebrates and fish (adjusted r 2   =   0.08–0.27).
5. Analyses of the partial effects of forest cover at three scales (reach, riparian and the entire catchment) on biomass and community structure metrics identified catchment and reach scales as being most influential and never detected a significant partial effect of forest cover at the riparian scale.
6. These results suggest that maintenance or protection of reach and riparian buffers alone will not sufficiently protect stream function and structure from catchment-wide impacts.  相似文献   

16.
Rapid urbanization throughout the world is expected to cause extensive loss of biodiversity in the upcoming decades. Disturbances associated with urbanization frequently operate over multiple spatial scales such that local species extirpations have been attributed both to localized habitat degradation and to regional changes in land use. Urbanization also may shape stream communities by restricting species dispersal within and among stream reaches. In this patch-dynamics view, anthropogenic disturbances and isolation jointly reduce stream biodiversity in urbanizing landscapes. We evaluated predictions of stream invertebrate community composition and abundance based on variation in environmental conditions at five distinct spatial scales: stream habitats, reaches, riparian corridors and watersheds and their spatial location within the larger three-river basin. Despite strong associations between biodiversity loss and human density in this study, local stream habitat and stream reach conditions were poor predictors of community patterns. Instead, local community diversity and abundance were more accurately predicted by riparian vegetation and watershed landscape structure. Spatial coordinates associated with instream distances provided better predictions of stream communities than any of the environmental data sets. Together, results suggest that urbanization in the study region was associated with reduced stream invertebrate diversity through the alteration of landscape vegetation structure and patch connectivity. These findings suggest that maintaining and restoring watershed vegetation corridors in urban landscapes will aid efforts to conserve freshwater biodiversity.  相似文献   

17.
1. Although many studies have focussed on the effects of catchment land use on lotic systems, the importance of broad (catchment) and fine (segment/reach) scale effects on stream assemblages remain poorly understood. 2. Nine biological metrics for macrophytes (498 sites), benthic macroinvertebrates (491) and fish (478) of lowland and mountain streams in four ecoregions of France and Germany were related to catchment and riparian buffer land use using partial Redundancy Analysis and Boosted Regression Trees (BRTs). 3. Lotic fauna was better correlated (mean max., r = 0.450) than flora (r = 0.277) to both scales of land use: the strongest correlations were noted for mountain streams. BRTs revealed strong non‐linear relationships between mountain assemblage metrics and land use. Correlations increased with increasing buffer lengths, suggesting the importance of near‐stream land use on biotic assemblages. 4. Several metrics changed markedly between 10–20% (mountain ecoregions) and 40–45% (lowland) of arable land use, irrespective of the buffer size. At mountain sites with >10% catchment arable land use, metric values differed between sites with <30% and sites with >30% forest in the near‐stream riparian area. 5. These findings support the role of riparian land use in catchment management; however, differences between mountain and lowland ecoregions support the need for ecoregion‐specific management.  相似文献   

18.
We studied riparian forests along mountain streams in four large watersheds of western Oregon and far northern California, USA, to better understand the multiscale controls on woody riparian vegetation in a geographically complex region. In each of the four-study watersheds, we sampled woody riparian vegetation in161-ha sampling reaches that straddled the stream channel. Within each hectare, we sampled riparian vegetation and local environmental factors in 40 m2 sampling plots arrayed along topographic transects. We also surveyed natural disturbance gaps in 6 ha in each watershed to explore the effects of fine scale disturbance on species distributions. We compared species composition across our study watersheds and used Nonmetric Multidimensional Scaling (NMS) and chi-squared analyses to compare the relative importance of landscape scale climate variables and local topographic and disturbance variables in explaining species distributions at sampling plot and hectare scales. We noted substantial turnover in the riparian flora across the region, with greatest numbers of unique species in watersheds at the ends of the regional gradient. In NMS ordinations at both scales, variation in woody riparian species composition showed strongest correlations with climatic variables and Rubus spectabilis cover, but the latter was only an important factor in the two northern watersheds. At the smaller scale, topographic variables were also important. Chi-squared analyses confirmed that more species showed landscape scale habitat preferences (watershed associations) than associations with topographic position (94.7% vs. 42.7% of species tested) or gap versus forest setting (94.7% vs. 24.6% of species tested). The woody riparian flora of western Oregon shows important biogeographic variation; species distributions showed strong associations with climatic variables, which were the primary correlates of compositional change between riparian sites at both scales analyzed. Additional local variation in composition was explained by measures of topography and disturbance.  相似文献   

19.
20.
We compared land cover, riparian vegetation, and instream habitat characteristics with stream macroinvertebrate assemblages in 25 catchments in the Carpathian Mountains in Central Europe. This study area was particularly selected because of its diverse history of forest and agricultural ecosystems linked to geopolitical dynamic, which provide a suite of unique landscape scale, land cover settings in one ecoregion. Canonical Correspondence Analysis (CCA) showed that variation in composition and structure of macroinvertebrate assemblages was primarily related to four land cover types, and not to riparian or instream habitat. These were the portions in the catchment areas of (1) broadleaved forest, (2) fine-grained agricultural landscape mosaic with scattered trees (e.g., pre-industrial cultural landscape), (3) mixed forest, and (4) natural grassland without trees. Principal Component Analysis (PCA) suggested that land cover types and stream channel substrates co-varied. The PCA also showed that chemical variables, including organic carbon, had higher values in the agricultural landscape compared to natural forests. The major source of variation among taxa in streams was higher abundance of Diptera in agricultural landscapes and of Plecoptera, Coleoptera, Trichoptera, and Amphipoda in forests. Gastropoda and Oligochaeta were more abundant in open, fine-grained agricultural landscape mosaics with scattered trees. Ephemeroptera taxa were quite indifferent to these gradients in catchment land cover, but showed a tendency of being more abundant in the pre-industrial cultural landscape. Our findings suggest that land cover can be used as a proxy of the composition and structure of macroinvertebrate assemblages. This means that land use management at the catchment scale is needed for efficient conservation and recovery of stream invertebrate communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号