首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Aim To investigate whether six plant life‐history traits that have been related to colonization ability at local scales are also related to the geographical range characteristics of 273 forest plant species. Location Continental western Europe, five countries in particular: France, Luxemburg, Belgium, the Netherlands and Germany. The region is situated between 42° and 55°N and 5°W and 15°E and has a summed total area of 971,404 km2. Methods Distribution data were compiled from five national data bases and converted to a 10′ grid. Life‐history traits were taken from existing compilations of autecological information of European species. The spatial arrangement of occupied grid cells was investigated using Ripley's K. Cross‐species correlations and phylogenetically independent contrasts were used to investigate the relationships between plant life‐history traits and three range characteristics: area of occupancy, latitudinal extent and centroid latitude. Results For herbaceous species, seed dispersal mode, seed production and seed bank longevity exhibited significant associations with geographical range characteristics, including area of occupancy. Woody plant species exhibited fewer significant associations, although maximum height was positively associated with range centroid latitude within the study area. Furthermore, the ranges of species with limited dispersal ability were found to be more clustered than the ranges of species with morphological adaptations for long‐distance seed dispersal. Main conclusions For western European forest plant species, life‐history traits that are related to colonization ability at local scales are associated with variation in large‐scale geographical range characteristics. This finding implies that the distributions of some forest plant species in the study area may be limited by seed dispersal and colonization capacity rather than climate or other environmental factors.  相似文献   

2.
3.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

4.
5.
6.
7.
The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.  相似文献   

8.
Despite the recognition that the capacity to acquire N is critical in plant response to CO2 enrichment, there is little information on how elevated CO2 affects root N uptake kinetics. The few available data indicate a highly variable pattern of response to elevated CO2, but it is presently unclear if the observed inconsistencies are caused by differences in experimental protocols or by true species differences. Furthermore, if there are interspecific variations in N uptake responses to elevated CO2, it is not clear whether these are associated with different functional groups. Accordingly, we examined intact root‐system NH4+ and NO3 uptake kinetic responses to elevated CO2 in seedlings of six temperate forest tree species, representing (i) fast‐ vs. slow‐growers and (ii) broad‐leaves vs. conifers, that were cultured and assayed in otherwise similar conditions. In general, the species tested had a higher uptake capacity (Vmax) for NH4+ than for NO3. Species substantially differed in their NO3 and NH4+ uptake capacities, but the interspecific differences were markedly greater for NO3 than NH4+ uptake. Elevated CO2 had a species‐dependent effect on root uptake capacity for NH4+ ranging from an increase of 215% in Acer negundo L. to a decrease of about 40% in Quercus macrocarpa Michx. In contrast, NO3 uptake capacity responded little to CO2 in all the species except A. negundo in which it was significantly down‐regulated at elevated CO2. Across species, the capacity for NH4+ uptake was positively correlated with the relative growth rate (RGR) of species; however, the CO2 effect on NH4+ uptake capacity could not be explained by changes in RGR. The observed variation in NH4+ uptake response to elevated CO2 was also inconsistent with life‐form differences. Other possible mechanisms that may explain why elevated CO2 elicits a species‐specific response in root N uptake kinetics are discussed. Despite the fact that the exact mechanism(s) for such interspecific variation remains unresolved, these differences may have a significant implication for competitive interactions and community responses to elevated CO2 environment. We suggest that differential species responses in nutrient uptake capacity could be one potential mechanism for the CO2‐induced shifts in net primary productivity and species composition that have been observed in experimental communities exposed to elevated levels of CO2.  相似文献   

9.
10.
11.
12.
Question: Which biological traits (persistence, regeneration, dispersion traits and resource requirements) may explain the distribution of woodland flora along an urban–rural gradient? Location: The study was carried out in three medium‐sized conurbations of north‐western France: Angers, Nantes and Rennes. Methods: We sampled the vegetation of 36 small woodlands of about 1.5 ha composed of non‐planted vegetation along an urban–rural gradient. We characterized the position of woodlands along the urban–rural gradient by examining adjacent land cover. By using an ordination analysis (RLQ), we analysed which traits out of –23 tested were related to the contrasted distribution of species along the urban–rural gradient. Results: Species that are more likely to be found in urban woodlands than rural woodlands have different persistence traits (higher specific leaf area, more often rosette or semi‐rosette form, less underground vegetative multiplication), resource requirements (affinity for base‐rich and fertile soils) and regeneration traits (short life‐span). Dispersion traits were not related to the distribution of species along the urban–rural gradient. Conclusions: Our approach identifies traits that can help to determine the vulnerability of forest species as a result of the environmental changes that follow urbanization. Limiting the influence of the urban environment on habitat quality (particularly disturbance and soil enrichment) is likely to be of major importance in maintaining the plant biodiversity in woodlands.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号