首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of kinetic parameters have been compared in the membrane-bound and purified forms of the (sodium + potassium)-activated adenosinetriphosphatase (NaK ATPase) from the rectal gland of the spiny dogfish, Squalus acanthias. The kinetic parameters which have been studied have been temperature optima, pH optima, Mg-activation curves, optimum ATP/Mg ratios, Km for ATP, ouabain-inhibition curves, and Na and K-activation curves. All kinetic parameters were remarkably similar for both forms of the enzyme. This encourages us to believe that information obtained from the pure enzyme can be extrapolated to the enzyme in its native membrane environment and should throw light on the molecular mechanism of Na and K transport.  相似文献   

2.
The effects of two lectins, wheat germ agglutinin and concanavalin A, were studied on a variety of parameters of two highly purified (Na+ + K+)-ATPases (ATP phosphohydrolase, EC 3.6.1.3), from the rectal salt gland of Squalus acanthias and from the electroplax of Electrophorus electricus. Both lectins agglutinated the rectal gland enzyme equally, but wheat germ agglutinin inhibited (Na+ + K+)-ATPase activity much more. The electroplax enzyme was only marginally agglutinated and inhibited by the lectins. Neuraminidase treatment of the rectal gland (Na+ + K+)-ATPase had no effect on germ agglutinin inhibition. The inhibition of the rectal gland (Na+ + K+)-ATPase by wheat germ agglutinin could be reversed by N,N'-diacetylchitobiose, which has a high affinity for wheat germ agglutinin. Neither ouabain inhibition nor ouabain binding to the rectal gland enzyme was affected by wheat germ agglutinin. The p-nitrophenylphosphatase activity of the rectal gland enzyme was not inhibited by wheat germ agglutinin. Na+-ATPase activity, which reflects ATP binding and phosphorylation at the substrate site was inhibited by wheat germ agglutinin and this inhibition was reversed by potassium. Evidence is cited (Pennington, J. and Hokin, L.E., in preparation) that the inhibition of the (Na+ + K+)-ATPase by wheat germ agglutinin is due to binding to the glycoprotein subunit.  相似文献   

3.
The chemical properties of two highly purified preparations of (sodium + potassium)-activated adenosine triphosphatase (NaK ATPase) and their subunits have been compared. One preparation is derived from the rectal gland of the spiny dogfish shark, Squalus acanthias and the other preparation is derived from the electric organ of the electric eel, Electrophorus electricus. Ouabain binding and phosphorylation from [gamma-32-P]ATP for both enzymes ranged from 4000 to 4300 pmol per mg of protein. This gives a stoichiometry for ouabain binding and phosphorylation of 1:1 for both enzymes. The molar ratios of catalytic subunit to glycoprotein was 2:1 for both enzymes, suggesting a minimum molecular weight of 250, 000, which agrees with the molecular weight obtained by radiation inactivation. Assuming that only one of the two catalytic subunits is phosphorylated and binds ouabain per (sodium + potassium)-activated adenosine triphosphatase molecule the data on phosphorylation and ouabain binding also give a molecular weight of 250, 000. The data on phosphorylatiion, ouabain binding, subunit composition, and molecular weight based on radiaion inactivation are thus all internally consistent. A technique has been developed for isolation of pure catalytic subunit and glycoprotein in good yields by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A variety of chemical studies have been carried out with the purified subunits. The amino acid composition of the catalytic subunit was different from that of the glycoprotein, but the amino acid composition of each of the two subunits was essentially the same for both species. However, the NH2-terminal amino acid for the catalytic subunit was alanine for the rectal gland enzyme and serine for the electric organ enzyme, suggesting some differencesin amino acid sequences for the two species. The NH2-terminal amino acid for the glycoprotein was alanine for the two species. The glycoproteins from both species contained the same carbohydrates but in quite differing amounts. The carbohydrates were glucosamine, sialic acid, fucose, galactose, mannose, and glucose. The release of all the sialic acid from the electric organ enzyme and the release of 40% of the sialic acid from the rectal gland enzyme did not affect (sodium + potassium)-activated adenosine triphosphatase activity. Both enzymes contained the following phospholipids, which accounted for 98 to 100% of the total phospholipid phosphorus: sphingomyelin, lecithin, phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol. With the exception of phosphatidylethanolamine, and phosphatidylinositol. With the exception of phosphatidylserine, the amount of any phospholipid per mg of enzyme as well as the total phospholipid content were quite different for the two enzymes.  相似文献   

4.
35Cl nmr relaxation rate measurements have been used to study anion-binding sites in pig heart lactate dehydrogenase. These studies reveal two types of sites, one is intimately associated with the active site, the other is not. The nonactive site has been ascribed to a subunit site in analogy with crystallographic results from the dogfish M4 enzyme. The binding of either the reduced or the oxidized form of NAD results in an increase in the 35Cl nmr relaxation rate by a factor of 1.8–2. The enhanced nmr relaxation rate of the binary lactate dehydrogenase-NAD complex is reduced on binding of the substrate inhibitor molecules oxamate or oxalate to a value less than that exhibited by lactate dehydrogenase alone. The enhancement of the nmr relaxation rate is attributed to a decrease in the dissociation constant of Cl for the enzyme. The Kp values for Cl binding to the active center site of lactate dehydrogenase is 0.85 m and for lactate dehydrogenase-NADH is 0.25 m. The ratio of these constants, 3.4, agrees well with the measured enhancement value 3.7. The effect of coenzyme analogs on the 35Cl nmr relaxation rate has been examined. 3-Acetylpyridine NAD produces an enhancement of 4.3, thionicotinamide NAD of 2.3, whereas 3-pyridinealdehyde, adenosinediphosphoribose, and adenosine diphosphate do not affect the nmr relaxation state of Cl bound to lactate dehydrogenase.  相似文献   

5.
Recent work in our laboratory on the purification and characterization of the (sodium + potassium)-activated adenosinetriphosphatase (NaK ATPase) has been reviewed. Two enzymes have been purified, that from the rectal salt gland of the spiny dogfish, Squalus acanthias and that from the electric organ of the electric eel, Electrophorus electricus. The enzyme appears to consist of two catalytic subunits of molecular weight of about 95,000 and one glycoprotein with a molecular weight of about 50,000. The amino acid composition, N-terminal amino acids, and the carbohydrate composition of these subunits have been determined. The phospholipid composition of the holoenzyme has also been determined. The protein component shows very little variation with evolution, but the carbohydrate and phospholipid components show considerable variation. It has been possible to form vesicles from the purified enzyme from Squalus acanthias and to demonstrate the ATP-dependent, ouabain inhibitable, coupled uphill transports of Na+ and K+. The properties of these transports are very similar to those observed previously in intact erythrocytes or resealed erythrocyte ghosts with respect to asymmetries of binding sites, stoichiometries of Na+ and K+ transported, Na+-Na+ exchange, and K+-K+ exchange. It is concluded that the NaK ATPase is the molecular machine for effecting Na+ and K+ transport in the intact cell membrane.  相似文献   

6.
The ouabain-sensitive phosphatase activity of purified pig kidney Na,K-ATPase preparation in the absence of potassium ion ((-K)phosphatase) was examined precisely. During the preparation procedures, the (-K)3-O-methylfluoresceinphosphatase ((-K)3-OMFPase) activity or the (-K)p-nitrophenylphosphatase ((-K)pNPPase) activity appeared to be purified in parallel with the Na,K-ATPase activity. The (-K)phosphatase activity was competitively inhibited by ATP and by ADP, with the K1 values of 0.25 microM and 1.4 microM, respectively. These values are consistent with their Kd values for the high-affinity ATP binding site of the Na,K-ATPase (Hegyvary, C. & Post, R.L. (1971) J. Biol. Chem. 246, 5234-5240). The substrate, pNPP, apparently competed with covalently bound fluorescein-5'-isothiocyanate (FITC), which is known to bind in the neighborhood of the high-affinity ATP binding site of the Na,K-ATPase, in both the (-K)phosphatase and the (+K)phosphatase reactions. The FITC-fluorescence intensity of FITC-labeled enzyme at the maximal steady-state activity of the (-K)phosphatase reaction was at a similar level to that of the E2 species. However, the FITC-labeled enzyme in the presence of only magnesium ion or only pNPP gave a fluorescence level similar to that of the E1 species. Oligomycin inhibited the (-K)phosphatase activity by at most 46%. On the basis of these results, it is strongly suggested that the (-K)phosphatase reaction is catalyzed at the high-affinity ATP binding site of Na,K-ATPase, and the (-K)phosphatase reaction proceeds in a cyclic manner (E1----E2----E1).  相似文献   

7.
The binding of ATP to brain l-glutamate decarboxylase (GAD) was studied by means of ATP-agarose chromatography, utilizing partially purified GAD from mouse brain after DEAE-cellulose chromatography and ammonium sulfate fractional precipitation. GAD was found to bind with a high affinity to the ATP-agarose with the ATP molecule linked to the beaded agarose through the N6-amino group. Agarose with ATP attached through the ribosyl hydroxyls was totally ineffective to bind the enzyme. GAD bound to the immobilized ATP could be dissociated by free ATP (10–50 mM), but not by ADP at a concentration as high as 100 mM. Mg2+ was not a required factor for the binding. The enzyme binding to the ATP-agarose occurred under a saturating concentration (50 μM) of pyridoxal 5′-phosphate (PLP). Moreover, GAD bound to the ATP-agarose was not dissociated by PLP even at 1.0 mM, indicating no competition of PLP with ATP for the same binding site on the enzyme. Kinetic characterization showed that binding of ATP raised the Km of the enzyme for PLP. Our approach provides direct evidence that there is a specific binding site on GAD for ATP, which is distinct from the binding site for PLP.  相似文献   

8.
Vesicles containing a purified shark rectal gland (sodium + potassium)-activated adenosine triphosphatase-(NaK ATPase) were prepared by dialyzing for 2 days egg lecithin, cholate, and the NaK ATPase purified from the rectal gland of Squalus acanthias. These vesicles were capable of both Na+ and K+ transport. Studies of K+ transport were made by measuring the ATP-stimulated transport outward of 42K+ or 86Rb+. Vesicles were preloaded with isotope by equilibration at 4 degrees for 1 to 3 days. Transport of 42K+ or 86Rb+ was initiated by addition of MgATP to the vesicles. The ATP-dependent exit of either isotope was the same. Experiments are presented which show that this loss of isotope was not due to changes in ion binding but rather due to a loss in the amount of ion trapped in the vesicular volume. The transport of K+ was dependent on external Mg2+. CTP was almost as effective as ATP in stimulating K+ transport, while UTP was relatively ineffective. These effects of nucleotides parallel their effects on Na+ accumulation and their effectiveness as substrates for the enzyme. Potassium transport was inhibited by ouabain and required the presence of Na+. The following asymmetries were seen: (a) addition of external Mg2+ supported K+ transport; (b) ouabain inhibited K+ transport only if it was present inside the vesicles; (c) addition of external Na+ to the vesicles stimulated K+ transport. External Li+ was ineffective as a Na+ substitute. The specific requirement of external Na+ for K+ transport indicates that K+ exit is coupled to Na+ entry. Changes in the internal vesicular ion concentrations were studied with vesicles prepared in 20 mM NaCl and 50 mM KCl. After 1 hour of transport at 25 degrees, a typical Na+ concentration in the vesicles in the presence of ATP was 72 mM. A typical K+ concentration in the vesicles was 10 mM as measured with 42K+ or 6 mM as measured with 86Rb+. The following relationships have been calculated for Na+ transport, K+ transport and ATP hydrolysis: Na+/ATP = 1.42, K+/ATP =1.04, and Na+/K+ = 1.43. The ratio of 2.8 Na+ transported in to 2 K+ transported out is very close to the value reported for the red cell membrane. Potassium-potassium exchange similar to that observed in the red cell membrane and attributed to the Na+-K+ pump (stimulated by ATP and orthophosphate and inhibited by ouabain) was observed when vesicles were prepared in the absence of Na+. The results reported in this paper prove that the shark rectal gland NaK ATPase, which is 90 to 95% pure, is the isolated pump for the coupled transports of Na+ and K+.  相似文献   

9.
Na,K-ATPase from the rectal glands of the spiny dogfish (Squalus acanthias) has been purified by concanavalin A—Sepharose affinity chromatography after solubilization in the nonionic detergent octaethyleneglycoldodecylmonoether. The method is rapid and yields enzyme at high protein concentrations, and the enzyme is fully active. The enzyme particles behave as a homogeneous population of particles, each containing protein, lipid, and detergent. The size of the particle is identical to what has been measured previously, giving a protein molecular weight of 270,000 with 50 mol of lipid bound.  相似文献   

10.
A simple purification procedure for the Na,K-ATPase from membranes of the rectal gland of Squalus acanthias or crude microsomal fractions from the electric organ of Electrophorus electricus is presented here. The purification procedure consists of solubilization of the Na,K-ATPase with the nonionic detergent. Lubrol WX, chromatography of the diluted Lubrol extract on aminoethyl cellulose, and ammonium sulfate fractionation (1) of the concentrated eluate from the aminoethyl cellulose column. The yields of final purified enzyme are comparable to the earlier purification (1–4) involving the expensive and cumbersome zonal centrifugation stop. The purity of the final enzyme, as attested to by specific activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is as great or greater than that previously reported for the enzyme purified by the procedure involving zonal centrifugation. The simplicity of the present procedure, coupled with the ready commercial availability of electric eels which are quite hardy on shipment, makes purification of the Na,K-ATPase widely available to workers in the field.  相似文献   

11.
The (Ca2+ + Mg2+-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tej?ka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81–88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 μM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

12.
Investigations of the E2 → E1 conformational change of Na+,K+-ATPase from shark rectal gland and pig kidney via the stopped-flow technique have revealed major differences in the kinetics and mechanisms of the two enzymes. Mammalian kidney Na+,K+-ATPase appears to exist in a diprotomeric (αβ)2 state in the absence of ATP, with protein-protein interactions between the α-subunits causing an inhibition of the transition, which occurs as a two-step process: E2:E2 → E2:E1 → E1:E1. This is evidenced by a biphasicity in the observed kinetics. Binding of ATP to the E1 or E2 states causes the kinetics to become monophasic and accelerate, which can be explained by an ATP-induced dissociation of the diprotomer into separate αβ protomers and relief of the preexisting inhibition. In the case of enzyme from shark rectal gland, the observed kinetics are monophasic at all ATP concentrations, indicating a monoprotomeric enzyme; however, an acceleration of the E2 → E1 transition by ATP still occurs, to a maximum rate constant of 182 (± 6) s−1. This indicates that ATP has two separate mechanisms whereby it accelerates the E2 → E1 transition of Na+,K+-ATPase αβ protomers and (αβ)2 diprotomers.  相似文献   

13.
Comparison of Na,K-ATPase from skeletal and cardiac muscle revealed that, although the skeletal muscle enzyme was only slightly less sensitive to inhibition by ouabain, the rates of [3H]ouabain binding to, and dissociation from, the skeletal enzyme were much faster than the corresponding rates for the cardiac enzyme. The skeletal muscle enzyme required higher concentrations of potassium to stabilize the ouabainenzyme complex and to stimulate the K+-phosphatase activity. The K+-phosphatase activity was only 8% of the Na,K-ATPase activity of the skeletal muscle enzyme, compared to 22% for the cardiac preparation. The glycoprotein subunit found in Na,K-ATPases from cardiac and many other tissues appeared to be absent in the enzyme from skeletal muscle. The differences in binding and dissociation rates for ouabain suggest that there may be significant differences in the structure of the digitalis receptor in the two enzymes. The I50 for ouabain inhibition of the skeletal muscle Na,K-ATPase was, however, only slightly higher than for the cardiac enzyme, suggesting that the lack of an inotropic effect of cardiac glycosides on skeletal muscle could not be due to failure of the digitalis drugs to bind to and inhibit the membrane-linked sodium pump.  相似文献   

14.
Jun Nakamura 《BBA》1983,723(2):182-190
The effects of ATP on Ca2+ binding in the absence of added Mg2+ to the purified sarcoplasmic reticulum Ca2+-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca2+-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca2+ binding was 4·105 M?1, which was not significantly different from that obtained in the absence of ATP. AdoP[CH2]PP has little effect on the Ca2+-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca2+ binding. ADP decreased the level of ATP-induced Ca2+ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca2+ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca2+ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl2; after the release of Ca2+, the phosphoenzyme decayed. These observations suggest that Mg2+, added after the ATP-induced Ca2+-binding process, may replace the Ca2+ on the phosphoenzyme and initiate phosphoenzyme decomposition.  相似文献   

15.
1. [3H]Batrachotoxinin A-20-α-benzoate (BTX-B), a radioligand that labels the alkaloid activator recognition site of the voltage-sensitive sodium channel, was bound specifically to high affinity, saturable sites in a subcellular preparation from house fly (Musca domestica L.) heads that was shown previously to contain binding sites for other sodium channel-directed ligands.2. Specific binding of [3H]BTX-B was observed in the presence of 140 mM sodium or potassium and was inhibited by choline ion.3. Saturating concentrations of scorpion (Leiurus quinquestriatus) venom stimulated the specific binding of [3H]BTX-B four-fold, increasing the proportion of specific binding of 10 nM [3H]BTX-B from less than 15% to 40%. Equilibrium dissociation studies in the presence of scorpion venom gave an equilibrium dissociation constant (KD) for [3H]BTX-B of 80 nM and a maximal binding capacity (Bmax) of 1.5 pmol/mg protein.4. Parallel experiments in the absence of venom gave a KD value of 140 nM and a Bmax of 1.3 pmol/mg protein, indicating that scorpion venom stimulated [3H]BTX-B binding by increasing the affinity of this site approximately two-fold.5. The specific binding of [3H]BTX-B was inhibited by the sodium channel activators aconitine and batrachotoxin and, to a lesser extent, by the anticonvulsant diphenylhydantoin. However, several other sodium channel-directed neurotoxins known to exert allosteric effects on the binding of [3H]BTX-B to mammalian brain preparations did not affect the binding of [3H]BTX-B to house fly head membranes.6. These studies provide evidence for a high affinity binding site in house fly head membrane preparations that exhibits properties expected of the activator recognition site of the voltage-sensitive sodium channel but does not respond to several compounds known to modify allosterically the binding of [3H]BTX-B to sodium channels in mammalian brain.  相似文献   

16.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

17.
Na/K-ATPase of salt-stressed salt glands of the domestic duck (Anas platyrhynchos) was purified in membrane-bound form by incubation of the microsomal fraction with sodium dodecylsulphate and ATP followed by discontinuous sucrose gradient centrifugation. Gel electrophoresis of the purified plasma membrane preparation substantially showed the two polypeptide subunits of the Na/K-ATPase both of which stained with the periodic acid-Schiff reagent. About 99% of the total ATPase activity was ouabain-inhibitable amounting to 1300 mumol Pi/(mg protein X h) of specific activity. The anion-stimulated, ouabain-insensitive ATPase increased parallel to the Na/K-ATPase up to the microsomal fraction until it totally vanished during SDS incubation. Electron microscopy of thin sections revealed that the purified fraction consisted of flat and cup-shaped triple-layered membrane fragments. Particles arranged into clusters and strands were visible as 3 to 5 nm surface particles in negatively stained suspensions and as 8 to 10 nm intramembraneous particles in freeze fracture replicas. The differential distribution of the intramembraneous particles on the fracture faces reflected the structural membrane asymmetry. Solubilization of Na/K-ATPase led to the disappearance of intramembraneous particles. Incorporation of the solubilized enzyme into phosphatidylcholine vesicles again showed 8 to 10 nm particles apparently orientated at random in the artificial membrane. Control liposomes prepared in the absence of solubilized enzyme were devoid of intramembraneous particles. These results clearly demonstrate that the avian salt gland Na/K-ATPase exists as 8 to 10 nm particles in both the purified plasma membrane and the artificial phospholipid membrane.  相似文献   

18.
1. The intrinsic Na(+), K(+), Mg(2+) and Ca(2+) contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na(+) from 90+/-20 to 24+/-12, the bound K(+) from 27+/-3 to 7+/-2, the bound Mg(2+) from 20+/-2 to 3+/-1 and the bound calcium from 8+/-1 to <1nmol/mg of protein. 3. The activities of the Na(+)+K(+)+Mg(2+)-stimulated adenosine triphosphatase and the Na(+)-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5mum (ATP/protein ratio 12.5pmol/mug). 4. The Na(+)-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5mum-magnesium chloride and 2mum-potassium chloride. Addition of 2.5mum-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na(+)-dependent ATP hydrolysis was partly restored with 2.5mum-magnesium chloride; addition of K(+) in the range 2-10mum-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0 degrees C with 0.5nmol of K(+)/mg of protein so that the final added K(+) in the reaction mixture was 0.1mum restored the Na(+)-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [(42)K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K(+)/mg of protein was linear over a period of 20min and was inhibited by Na(+). Half-maximal inhibition of (42)K(+)-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na(+)-dependent hydrolysis of ATP observed in the unwashed preparation is due to activation by bound K(+) and Mg(2+) of the Na(+)+K(+)+Mg(2+)-stimulated adenosine triphosphatase system and (b) that the enzyme system is able to bind K(+) from a solution of 0.5mum-potassium chloride.  相似文献   

19.
G.D. Webster  J.B. Jackson 《BBA》1978,503(1):135-154
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (α, β and γ) upon electrophoresis in sodium dodecyl sulphate.2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol.3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation.4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate.5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates as a single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure.6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography.7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP.8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected.9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 μM, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations.10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores.11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

20.
A membrane-bound, monovalent cation-stimulated ATPase from Zea mays roots has been purified to a single band on sodium dodecyl sulfate gel electrophoresis. Microsomal preparations with K+ -stimulated ATPase activity were extracted with 1 m NaClO4, and the solubilized enzyme was purified by chromatography on columns of n-hexyl-Sepharose, DEAE-cellulose, and Sephadex G-100 Superfine. A 500-fold purification over the activity present in the microsomes was obtained. The K+ -stimulated activity shows positive cooperativity with increasing KCl concentrations. The purified enzyme shows K+ -stimulated activity with ATP, GTP, UTP, CTP, ADP, α + β-glycerophosphate, p-nitrophenyl phosphate, and pyrophosphate as substrates. Under most conditions ATP is the best substrate. Although dicyclohexyl carbodiimide and Ca2+ inhibit and alkylguanidines stimulate the K+ -ATPase while bound to microsomes, they have no effect on the purified enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号