首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delimitation of species is an important and controversial area within evolutionary biology. Many species boundaries have been defined using morphological data. New genetic approaches now offer more objective evaluation and assessment of the reliability of morphological variation as an indicator that speciation has occurred. We examined geographic variation in morphology of the continuously distributed skink Chalcides mionecton from Morocco and used Bayesian analyses of nuclear and mitochondrial DNA (mtDNA) loci to examine: (i) their concordance with morphological patterns, (ii) support for species delimitation, (iii) timing of speciation, and (iv) levels of gene flow between species. Four digit individuals were found at sites between Cap Rhir (in the south) and the northern extreme of the range, whereas five‐digit individuals were found in two disjunct areas: (i) south of Cap Rhir and (ii) the north of the range where they were often syntopic with four‐digit individuals. The pattern of variation in generalized body dimensions was largely concordant with that in digit number, suggesting two general morphotypes. Bayesian analyses of population structure showed that individuals from sites south of Cap Rhir formed one genetic cluster, but that northern four‐ and five‐digit individuals clustered together. Statistical support for delimitation of these genetic clusters into two species was provided by a recent Bayesian method. Phylogenetic–coalescent dating with external time calibrations indicates that speciation was relatively recent, with a 95% posterior interval of 0.46–2.66 mya. This postdates equivalent phylogenetic dating estimates of sequence divergence by approximately 1 Ma. Statistical analyses of a small number of independent loci provide important insights into the history of the speciation process in C. mionecton and support delimitation of populations into two species with distributions that are spatially discordant with patterns of morphological variation.  相似文献   

2.
3.
The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was an effective approach for delimitating Melampsora species on willows in China.  相似文献   

4.
In species delimitation, a formidable goal in the discipline of systematic biology, we identify and describe species morphologically and ecologically based on phenotypic data. Efficient genotyping technologies produce genetic and genomic data with relative ease, which promotes species discovery and validation using genotype data. For the last two decades, we have seen the development of species delimitation methods based on genetic distances and phylogenetic trees using genotype data. However, speciation processes via evolutionary relationship among species were mostly divorced from species delimitation. Recent approaches to drawing species boundaries use multi-locus sequence data to account for evolutionary processes including speciation and gene flow. They allow us to learn of jointly speciation and species delimitation, leveraging computational and statistical techniques developed in population genetics and phylogenetics. Here, we review the recent progress in the development of species delimitation using genotype data and discuss the future outlook for the research of developing species delimitation methods.  相似文献   

5.
6.
Species delimitation is a major research focus in evolutionary biology because accurate species boundaries are a prerequisite for the study of speciation. New species delimitation methods (SDMs) can accommodate nonmonophyletic species and gene tree discordance as a result of incomplete lineage sorting via the coalescent model, but do not explicitly accommodate gene flow after divergence. Approximate Bayesian computation (ABC) can incorporate gene flow and estimate other relevant parameters of the speciation process while testing alternative species delimitation hypotheses. We evaluated the accuracy of BPP, SpeDeSTEM, and ABC for delimiting species using simulated data and applied these methods to empirical data from lizards of the Liolaemus darwinii complex. Overall, BPP was the most accurate, ABC showed an intermediate accuracy, and SpeDeSTEM was the least accurate under most simulated conditions. All three SDMs showed lower accuracy when speciation occurred despite gene flow, as found in previous studies, but ABC was the method with the smallest decrease in accuracy. All three SDMs consistently supported the distinctness of southern and northern lineages within L. darwinii. These SDMs based on genetic data should be complemented with novel SDMs based on morphological and ecological data to achieve truly integrative and statistically robust approaches to species discovery.  相似文献   

7.
Species delimitation is fundamental for biological studies, yet precise delimitation is not an easy task, and every involved approach has an inherent failure rate. Integrative taxonomy, a method that merges multiple lines of evidence, can profoundly contribute to reliable alpha‐taxonomy and shed light on the processes behind speciation. In this study, we explored and validated species limits in a group of closely related Megabunus harvestmen (Eupnoi, Phalangiidae) endemic to the European Alps. Without a priori species hypotheses, we used multiple sources of inference, including mitochondrial and multilocus nuclear DNA, morphometrics and chemistry. The results of these discovery approaches revealed morphological crypsis and multiple new species within two of the five hitherto known species. Based on our analyses, we discussed the most plausible evolutionary scenarios, invoked the most reasonable species hypotheses and validated the new species limits. Building upon the achieved rigour, three new species, Megabunus cryptobergomas Muster and Wachter sp. nov., Megabunus coelodonta Muster and Steiner sp. nov., and Megabunus lentipes Muster and Komposch sp. nov., are formally described. In addition, we provide a dichotomous morphological key to the Megabunus species of the Alps. Our work demonstrates the suitability of integrative, discovery‐based approaches in combination with validation approaches to precisely characterize species and enabled us to implement nomenclatural consequences for this genus.  相似文献   

8.
Over the past decade, molecular approaches to species delimitation have seen rapid development. However, species delimitation based on a single locus, for example, DNA barcodes, can lead to inaccurate results in cases of recent speciation and incomplete lineage sorting. Here, we compare the performance of Automatic Barcode Gap Discovery (ABGD), Bayesian Poisson tree processes (PTP), networks, generalized mixed Yule coalescent (GMYC) and Bayesian phylogenetics and phylogeography (BPP) models to delineate cryptic species previously detected by DNA barcodes within Tanytarsus (Diptera: Chironomidae) non‐biting midges. We compare the results from analyses of one mitochondrial (cytochrome c oxidase subunit I [COI]) and three nuclear (alanyl‐tRNA synthetase 1 [AATS1], carbamoyl phosphate synthetase 1 [CAD1] and 6‐phosphogluconate dehydrogenase [PGD]) protein‐coding genes. Our results show that species delimitation based on multiple nuclear DNA markers is largely concordant with morphological variation and delimitations using a single locus, for example, the COI barcode. However, ABGD, GMYC, PTP and network models led to conflicting results based on a single locus and delineate species differently than morphology. Results from BPP analyses on multiple loci correspond best with current morphological species concept. In total, 10 lineages of the Tanytarsus curticornis species complex were uncovered. Excluding a Norwegian population of Tanytarsus brundini which might have undergone recent hybridization, this suggests six hitherto unrecognized species new to science. Five distinct species are well supported in the Tanytarsus heusdensis species complex, including two species new to science.  相似文献   

9.
In birds, widespread species complexes often exhibit dramatic plumage differences across their distribution, which can give rise to discordance between morphotypes and phylogroups. Accurate identification of species diversity may require an integrated approach in which multilocus genetic data are used for inference and further corroborated by ecological, morphometric or behavioural data. Pomatorhinus gravivox and P. swinhoei, which were formerly considered component races of P. erythrogenys, were recently split using a delimitation system that mainly relied on the quantification of differences in phenotypic traits. We therefore carried out a reassessment of this taxonomic recommendation by conducting phylogenetic and population genetic analyses with multilocus genetic data. A deep mitochondrial split with a Kimura 2-parameter distance of 0.061 was observed, mainly corresponding to the two morphologically defined species. However, one individual from P. swinhoei harboured a haplotype of P. gravivox. Individual-based analyses of nuclear loci identified two distinct clusters that were exactly congruent with the two species. BPP delimitation also provided support for the separation. These congruencies support the notion that these two taxa are best regarded as two separate species. The presence of the P. gravivox mitochondrial haplotype in P. swinhoei was most likely a result of hybridization, due to the clear separation of nuclear loci. The speciation might be attributed to paleoclimatic changes but requires further evaluation due to the likelihood of ecological speciation. This study was in accordance with the results inferred from the quantitative system but highlighted the importance of sampling various data, especially in contact zones, in the study of taxonomy and speciation history.  相似文献   

10.
Species delimitation is at the core of biological sciences. During the last decade, molecular‐based approaches have advanced the field by providing additional sources of evidence to classical, morphology‐based taxonomy. However, taxonomy has not yet fully embraced molecular species delimitation beyond threshold‐based, single‐gene approaches, and taxonomic knowledge is not commonly integrated into multilocus species delimitation models. Here we aim to bridge empirical data (taxonomic and genetic) with recently developed coalescent‐based species delimitation approaches. We use the multispecies coalescent model as implemented in two Bayesian methods (dissect/stacey and bp&p ) to infer species hypotheses. In both cases, we account for phylogenetic uncertainty (by not using any guide tree) and taxonomic uncertainty (by measuring the impact of using a priori taxonomic assignments to specimens). We focus on an entire Neotropical tribe of butterflies, the Haeterini (Nymphalidae: Satyrinae). We contrast divergent taxonomic opinion – splitting, lumping and misclassifying species – in the light of different phenotypic classifications proposed to date. Our results provide a solid background for the recognition of 22 species. The synergistic approach presented here overcomes limitations in both traditional taxonomy (e.g. by recognizing cryptic species) and molecular‐based methods (e.g. by recognizing structured populations, and not raising them to species). Our framework provides a step forward towards standardization and increasing reproducibility of species delimitations.  相似文献   

11.
Perhaps the most important recent advance in species delimitation has been the development of model‐based approaches to objectively diagnose species diversity from genetic data. Additionally, the growing accessibility of next‐generation sequence data sets provides powerful insights into genome‐wide patterns of divergence during speciation. However, applying complex models to large data sets is time‐consuming and computationally costly, requiring careful consideration of the influence of both individual and population sampling, as well as the number and informativeness of loci on species delimitation conclusions. Here, we investigated how locus number and information content affect species delimitation results for an endangered Mexican salamander species, Ambystoma ordinarium. We compared results for an eight‐locus, 137‐individual data set and an 89‐locus, seven‐individual data set. For both data sets, we used species discovery methods to define delimitation models and species validation methods to rigorously test these hypotheses. We also used integrated demographic model selection tools to choose among delimitation models, while accounting for gene flow. Our results indicate that while cryptic lineages may be delimited with relatively few loci, sampling larger numbers of loci may be required to ensure that enough informative loci are available to accurately identify and validate shallow‐scale divergences. These analyses highlight the importance of striking a balance between dense sampling of loci and individuals, particularly in shallowly diverged lineages. They also suggest the presence of a currently unrecognized, endangered species in the western part of A. ordinarium's range.  相似文献   

12.
The broadly distributed genus Hyalopterus currently comprises three formally recognized species that are highly similar morphologically and hence difficult to be identified with certainty. This group has undergone multiple revisions in the past century, but none of these has assessed species from Asia, which has hampered our understanding of the species diversity within this genus. Based on a comprehensive data set from morphological data and host-associated data, and by coalescent-based delimitation approaches, the Hyalopterus species boundaries, distribution and diversity were clarified here to further reveal the composition of the species. Two single-locus (ML-GMYC and mPTP) and two multilocus (BPP and STACEY) delimitation methods were conducted based on extensive sampling. Then, the phylogenetic relationships and morphological divergence were assessed. Our data strongly supported that the number of recognized species in Hyalopterus had likely been underestimated. The phylogenetic analyses recovered four major clades, which corresponded to distinct host-plant preferences. Also, the morphological analyses showed significant differentiation for only one of the newly recognized candidate species uncovered by the delimitation approaches, suggesting the existence of at least two independent evolutionary lineages within Hyalopterus arundiniformis, which showed different patterns of host association. Moreover, based on our data, the taxonomic misidentification of H. arundiniformis in China was corrected here. This study lays the groundwork for the thorough taxonomic revision of Hyalopterus and for future evolutionary studies and underlines the importance of an integrated framework for species determination.  相似文献   

13.
Diatoms are one of the most abundant and arguably the most species‐rich group of protists. Diatom species delimitation has often been based exclusively on the recognition of morphological discontinuities without investigation of other lines of evidence. Even though DNA sequences and reproductive experiments have revealed several examples of (pseudo)cryptic diversity, our understanding of diatom species boundaries and diversity remains limited. The cosmopolitan pennate raphid diatom genus Pinnularia represents one of the most taxon‐rich diatom genera. In this study, we focused on the delimitation of species in one of the major clades of the genus, the Pinnularia subgibba group, based on 105 strains from a worldwide origin. We compared genetic distances between the sequences of seven molecular markers and selected the most variable pair, the mitochondrial cox1 and nuclear encoded LSU rDNA, to formulate a primary hypothesis on the species limits using three single‐locus automated species delimitation methods. We compared the DNA‐based primary hypotheses with morphology and with other available lines of evidence. The results indicate that our data set comprised 15 species of the P. subgibba group. The vast majority of these taxa have an uncertain taxonomic identity, suggesting that several may be unknown to science and/or members of (pseudo)cryptic species complexes within the P. subgibba group.  相似文献   

14.
Haplotype phylogenies based on DNA sequence data are increasingly being used to test traditional species-level taxonomies based on morphology. However, few studies have critically compared species limits based on morphological and DNA data, and the methods used to delimit species using either type of data are only rarely explained. In this paper, we review three approaches for species delimitation (tree-based with DNA data and tree-based and character-based with morphological data) and propose explicit protocols for each. We then compare species limits inferred from these approaches, using morphological and mtDNA data for the Yarrow's spiny lizard (Sceloporus jarrovii), a traditionally polytypic species from the southwestern United States and Mexico. All three approaches support division of S. jarrovii into five species, but only two species are the same among the three approaches. We find the greatest support for the five species that are delimited based on mtDNA data, and we argue that mtDNA data may have important (and previously unappreciated) advantages for species delimitation. Because different data and approaches can disagree so extensively, our results demonstrate that the methodology of species delimitation is a critical issue in systematics.  相似文献   

15.
The genus Potamometra Bianchi, 1896 represents big rheophilic semi-aquatic bugs that typically inhabit middle-altitude mountainous streams. Here, we integrated molecular and morphological data for delimiting species boundaries and understanding the evolutionary history of the genus Potamometra. Twenty-seven complete mitochondrial genomes of Potamometra were sequenced, with samples representing most of the known geographically distributed locations around the Sichuan Basin. The results of different species delimitation methods (ABGD, bPTP, GMYC and BPP) based on the monolocus or multilocus data strongly supported the existence of two cryptic new species (Potamometra anderseni Zheng, Ye & Bu, sp. nov. and Potamometra zhengi Zheng, Ye & Bu, sp. nov.) although more entities were found in the tree-based delimitation methods. The two new species were successfully validated using morphological characters within a detailed taxonomic framework. Phylogenetic analyses supported the reciprocal monophyly of the seven highly node-supported clades, which were matched with the five known species and two new taxa. A novel gene arrangement pattern that two trnF (trnF1 and trnF2) genes separated by an intergenic spacer (IGS) were found in all the species except the sister group of Potamometra berezowskii Bianchi, 1896 and Potamometra linnavuorii Chen, Nieser & Bu, 2016. This gene rearrangement event could be explained by the tandem duplication and random loss (TDRL) model. Our study emphasized that the combination of molecular sequence data, morphological characters and mitochondrial structural information could improve the accuracy of species delimitation.  相似文献   

16.
17.
Statistical species delimitation usually relies on singular data, primarily genetic, for detecting putative species and individual assignment to putative species. Given the variety of speciation mechanisms, singular data may not adequately represent the genetic, morphological and ecological diversity relevant to species delimitation. We describe a methodological framework combining multivariate and clustering techniques that uses genetic, morphological and ecological data to detect and assign individuals to putative species. Our approach recovers a similar number of species recognized using traditional, qualitative taxonomic approaches that are not detected when using purely genetic methods. Furthermore, our approach detects groupings that traditional, qualitative taxonomic approaches do not. This empirical test suggests that our approach to detecting and assigning individuals to putative species could be useful in species delimitation despite varying levels of differentiation across genetic, phenotypic and ecological axes. This work highlights a critical, and often overlooked, aspect of the process of statistical species delimitation—species detection and individual assignment. Irrespective of the species delimitation approach used, all downstream processing relies on how individuals are initially assigned, and the practices and statistical issues surrounding individual assignment warrant careful consideration.  相似文献   

18.
Bacterial strains are currently grouped into species based on overall genomic similarity and sharing of phenotypes deemed ecologically important. Many believe this polyphasic taxonomy is in need of revision because it lacks grounding in evolutionary theory, and boundaries between species are arbitrary. Recent taxonomy efforts using multilocus sequence typing (MLST) data are based on the identification of distinct phylogenetic clusters. However, these approaches face the problem of deciding the phylogenetic level at which clusters are representative of evolutionary or taxonomically distinct units. In this review, I propose classifying two phylogenetic clusters as separate species only when they have statistically significantly diverged as a result of adaptive evolution. More than a method for classification, the concept of adaptive divergence can be used in a 'reverse ecology' approach to identify lineages that are in the process of speciation or genes involved in initial adaptive divergence.  相似文献   

19.
The process of discovering species is a fundamental responsibility of systematics. Recently, there has been a growing interest in coalescent‐based methods of species delimitation aimed at objectively identifying species early in the divergence process. However, few empirical studies have compared these new methods with character‐based approaches for discovering species. In this study, we applied both a character‐based and a coalescent‐based approaches to delimit species in a closely related avian complex, the light‐vented/Taiwan bulbul (Pycnonotus sinensis/Pycnonotus taivanus). Population aggregation analyses of plumage, mitochondrial and 13 nuclear intron character data sets produced conflicting species hypotheses with plumage data suggesting three species, mitochondrial data suggesting two species, and nuclear intron data suggesting one species. Such conflict is expected among recently diverged species, and by integrating all sources of data, we delimited three species verified with independently congruent character evidence as well as a more weakly supported fourth species identified by a single character. Attempts to validate species hypothesis using Bayesian Phylogenetics and Phylogeography (BPP), a coalescent‐based method of species delimitation, revealed several issues that can seemingly affect statistical support for species recognition. We found that θ priors had a dramatic impact on speciation probabilities, with lower values consistently favouring splitting and higher values consistently favouring lumping. More resolved guide trees also resulted in overall higher speciation probabilities. Finally, we found suggestive evidence that BPP is sensitive to the divergent effects of nonrandom mating caused by intraspecific processes such as isolation‐with‐distance, and therefore, BPP may not be a conservative method for delimiting independently evolving population lineages. Based on these concerns, we questioned the reliability of BPP results and based our conclusions about species limits exclusively on character data.  相似文献   

20.
Species delimitation is difficult for taxa in which the morphological characters are poorly known because of the rarity of adult morphs or sexes, and in cryptic species. In primitively segmented spiders, family Liphistiidae, males are often unknown, and female genital morphology – usually species‐specific in spiders – exhibits considerable intraspecific variation. Here, we report on an integrative taxonomic study of the liphistiid genus Ganthela Xu & Kuntner, 2015, endemic to south‐east China, where males are only available for two of the seven morphological species (two known and five undescribed). We obtained DNA barcodes (cytochrome c oxidase subunit I gene, COI) for 51 newly collected specimens of six morphological species and analysed them using five species‐delimitation methods: DNA barcoding gap, species delimitation plugin [P ID(Liberal)], automatic barcode gap discovery (ABGD), generalized mixed Yule‐coalescent model (GMYC), and statistical parsimony (SP). Whereas the first three agreed with the morphology, GMYC and SP indicate several additional species. We used the consensus results to delimit and diagnose six Ganthela species, which in addition to the type species Ganthela yundingensis Xu, 2015, completes the revision of the genus. Although multi‐locus phylogenetic approaches may be needed for complex taxonomic delimitations, our results indicate that even single‐locus analyses based on the COI barcodes, if integrated with morphological and geographical data, may provide sufficiently reliable species delimitation. © 2015 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号