首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Background research findings which have led to current knowledge on the genetics of lactic acid bacteria are reviewed. Important early contributions by researchers with other microorganisms are highlighted to acknowledge milestone discoveries, especially those which have made genetic engineering of industrially important genera a reality. Current genetics in the dairy Streptococcus , Lactobacillus , Pediococcus , Leuconostoc , Bifidobacterium and Propionibacterium genera are discussed. Regulatory, environmental, and research funding concerns also are discussed.  相似文献   

2.
3.
Abstract A review of in vivo genetic systems covers the key features of transduction and conjugation but emphasises the intramolecular and intermolecular DNA interactions that are often associated with these processes. As well as the transfer of many lactose plasmids, conjugal transfer of nisin genes and the use of conjugation to construct bacteriophage-resistant dairy starter cultures are discussed. The discovery and characterization of insertion sequences in Lactobacillus and Lactococcus and the exploitation of heterologous conjugation and transposition systems in the lactic acid bacteria are described.  相似文献   

4.
In vivo genetic systems in lactic acid bacteria   总被引:18,自引:0,他引:18  
A review of in vivo genetic systems covers the key features of transduction and conjugation but emphasises the intramolecular and intermolecular DNA interactions that are often associated with these processes. As well as the transfer of many lactose plasmids, conjugal transfer of nisin genes and the use of conjugation to construct bacteriophage-resistant dairy starter cultures are discussed. The discovery and characterization of insertion sequences in Lactobacillus and Lactococcus and the exploitation of heterologous conjugation and transposition systems in the lactic acid bacteria are described.  相似文献   

5.
6.
Stability is an important issue when engineering bacteria for use as live vaccine vectors. For the majority of live bacterial vaccines, the antigen-encoding gene is either plasmid located or integrated into the chromosome. Regardless, several safety concerns can be raised for both instances. One concern when using plasmid-encoded antigens is the transfer of antibiotic resistance markers. Alternatively, for chromosomal integrated antigens however, the concern focuses on the spread and possible release of genetically-modified microorganisms (GMM) into the environment, which is problematic. Their recombinant nature calls for a proper bio-containment strategy to be implemented or in place before any realistic attempt at releasing a live bacterial vaccine. No examples of human bacterial vaccines causing problems among animals have been found in the literature but the possibility exists and has to be both tested and evaluated before release of a live bacterial vaccine. The ideal GMM for use in humans should therefore contain the minimal amount of foreign DNA and must not include an antibiotic resistance marker. Furthermore, the possibilities of transgene horizontal transfer must be minimized, and GMM lethality for biocontainment should be achieved in an unconfined environment.  相似文献   

7.
Lantibiotics are a diverse group of heavily modified antimicrobial and/or signalling peptides produced by a wide range of bacteria, including a variety of lactic acid bacteria. Based on their diverse structures and mode of action, at least six separate lantibiotic subgroups can be suggested, but all subgroups are characterized by significant post-translational modifications, which include the formation of (-methyl)lanthionines, among other unusual alterations. These small peptides are produced, modified, exported, sensed and combated by a complex set of proteins encoded by (usually) co-ordinately regulated operons. In some instances, the production and immunity have been shown to be auto-regulated by the mature lantibiotic. Since their discovery, interest in lantibiotics has been fuelled by their obvious potential as food-grade antimicrobials to improve food safety and quality; a potential which, to date, has been realised only by the longest characterised molecule, nisin. In addition, these peptides are often mooted as alternatives to antibiotics for some biomedical applications. The purpose of this paper is to review recent developments in our understanding of lantibiotic structure, molecular genetics and applications for this unusual class of bacteriocins.  相似文献   

8.
Lactic acid bacteria (LAB) have a long tradition of use in the food industry, and the number and diversity of their applications has increased considerably over the years. Traditionally, process optimization for these applications involved both strain selection and trial and error. More recently, metabolic engineering has emerged as a discipline that focuses on the rational improvement of industrially useful strains. In the post-genomic era, metabolic engineering increasingly benefits from systems biology, an approach that combines mathematical modelling techniques with functional-genomics data to build models for biological interpretation and--ultimately--prediction. In this review, the industrial applications of LAB are mapped onto available global, genome-scale metabolic modelling techniques to evaluate the extent to which functional genomics and systems biology can live up to their industrial promise.  相似文献   

9.
In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.  相似文献   

10.
The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The concentration of the last was always below 15% (wt/wt), which is related to the hydrophilic character revealed by water contact angles of less than 30 degrees. The surfaces of L. lactis cells had a polysaccharide concentration about twice that of proteins. The S-layer of L. helveticus was either interrupted or crossed by polysaccharide-rich compounds; the concentration of the latter was higher in the stationary growth phase than in the exponential growth phase. Further progress was made in the interpretation of XPS data in terms of chemical functions by showing that the oxygen component at 531.2 eV contains a contribution of phosphate in addition to the main contribution of the peptide link. The isoelectric points were around 2 and 3, and the electrophoretic mobilities above pH 5 (ionic strength, 1 mM) were about -3.0 x 10(-8) and -0.6 x 10(-8) m(2) s(-1) V(-1) for L. lactis and L. helveticus, respectively. The electrokinetic properties of the latter reveal the influence of carboxyl groups, while the difference between the two strains is related to a difference between N/P surface concentration ratios, reflecting the relative exposure of proteins and phosphate groups at the surface.  相似文献   

11.
Renault P 《Biochimie》2002,84(11):1073-1087
Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.  相似文献   

12.
The paper reviews the bacteriophages of the group N lactic streptococci centering on isolation, ultrastructure and morphology, phage receptors, the structure of the genome, protein components, the phenomenon of the lysogenic state, restriction-modification systems and genetic exchange by transfection and transduction. The resulting consequences on industrial fermentations are briefly discussed.  相似文献   

13.
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.  相似文献   

14.
To investigate the distribution of lactic acid bacteria (LAB) inhabiting canine intestines, a total of 374 gram-positive LAB and bifidobacteria (BF) isolated from large intestinal contents in 36 dogs were classified and identified by phenotypic and genetic analyses. Based on cell morphological sizes, these isolates were divided into seven biotypes containing the genera Lactobacillus, Bifidobacterium, Enterococcus, and Streptococcus. The LAB and BF isolates were classified into 38 chemotypes based on SDS-PAGE protein profile analysis of whole cells. Furthermore, partial 16S rDNA sequencing analysis demonstrated the presence of 24 bacterial species in the 38 chemotypes from 36 dogs. The identified species consisted of ten species belonging to the genus Lactobacillus (78.8%), seven species to the genus Bifidobacterium (6.8%), five species to the genus Enterococcus (11.6%), one species of Streptococcus bovis (2.0%), and one species of Pediococcus acidilactici (0.8%). In particular, the most predominant species in canine intestines were L. reuteri, L. animalis, and L. johnsonii and were found in the high frequency of occurrence of 77.8, 80.6, and 86.1%, respectively. Besides these, Enterococcus faecalis, Bifidobacterium animalis subsp. lactis, Pediococcus acidilactici, and Streptococcus bovis were also isolated in the present study. The sequences of the isolates also showed high levels of similarity to those of the reference strains registered previously in the DDBJ and the similarity was above 97.2%. Their partial 16S rRNA genes were registered in the DDBJ.  相似文献   

15.
乳酸菌应激反应及其在生产中的应用   总被引:1,自引:0,他引:1  
适应性反应是乳酸菌应激保护作用的常见方式。当细胞处于多种环境胁迫时,由一种适应性反应表达所诱导的交互保护作用,对细胞的生存很有利。乳酸菌的蛋白质组研究目前仍处于开始阶段。基因组和转录组分析无疑将补充现有的蛋白质组和遗传学知识。充分了解应激反应的机制可以更好地理解适应性反应和交互保护作用的基础,更合理地开发乳酸菌在工业生产中的应用。  相似文献   

16.
Lactic acid bacteria are an important group of microorganisms, several of which are used in fermented food processes. Lactococcus lactis is a non-pathogenic, non-invasive and non-colonising gram-positive lactic acid bacterium, the genome sequence of which has been established. A great deal is known about the genetics, vectors, gene expression systems and protein secretion apparatus of this bacterium. Recently, recombinant strains of L. lactis have been developed that might provide in vivo delivery of cytokines and specific antigens across mucosal surfaces to the immune system of animals.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号