首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty Acid Transport Through the Blood-Brain Barrier   总被引:4,自引:2,他引:2  
Across the cerebral capillaries, the anatomical locus of the blood-brain barrier, the unidirectional influxes of the saturated fatty acids, octanoic and myristic acids, and the unsaturated essential fatty acid, linoleic acid, were measured. Employing an in situ rat brain perfusion technique that allows control of perfusate composition and accurate measurement of perfusate-to-brain fatty acid transport, we found that both [14C]octanoic and [14C]myristic acids were transported through the blood-brain barrier in vivo, in large part, by a specific, probenecid-sensitive transport system. However, the transport of [14C]linoleic acid was not probenecid sensitive. With 0.5 μM fatty acid but no plasma proteins in the perfusate, the permeability-surface area constant was higher for myristic acid (4.8 × 10--2× s-1) than for octanoic and linoleic acids (1.5 and 1.2 × 10--2× s-1, respectively). Approximately 70, 30, and 25% of the [14C]myristic, [14C]octanoic, or [14C]linoleic acids, respectively, were extracted from the perfusate.  相似文献   

2.
Chick embryo heart cells in tissue culture actively oxidize [1-14C]palmitate to 14CO2. Fatty acid oxidation by cell monolayers was linear with time and increasing protein concentration. The addition of carnitine to the assay medium resulted in a 30–70% increase in the rate of fatty acid oxidation. The specific activity of palmitic acid oxidation did not change significantly with time in culture and was also the same in rapidly proliferating and density-inhibited cell cultures. Addition of unlabeled glucose to the assay medium resulted in a 50% decrease in 14CO2 production from [1-14C]palmitate. Conversely, palmitate had a similar sparing effect on [14C]glucose oxidation to 14CO2. Lactate production accounted for most of the glucose depleted from the medium and was not inhibited by the presence of palmitate in the assay. Thus, the sparing action of the fatty acids on glucose oxidation appears to be at the mitochondrial level. The results indicate that although chick heart cells in culture are primarily anaerobic, they can oxidize fatty acid actively.  相似文献   

3.
Chopped tissue from developing soybean cotyledons incorporated [1-14C]acetate into palmitate, stearate, oleate, and linoleate, but with germinating cotyledons much less [1-14C]acetate was incorporated and the principal labeled products were palmitate, stearate, and oleate. When supernatant fractions from developing cotyledons were incubated with [1-14C]acetate or [2-14C]malonate the principal labeled products were palmitate and stearate. Supernatant fractions from germinating seed incorporated [2-14C]malonate into palmitate and also into short chain fatty acids including decanoate, laurate, and myristate. Supernatants from developing cotyledons required acyl carrier protein (ACP), ATP, CoA, and reduced pyridine nucleotides for maximal rates of incorporation of either [1-14C]acetate or [2-14C]malonate into palmitate and stearate. The de novo fatty acid synthetase which converts acetyl- and malonyl-ACP's to palmityl ACP was active in supernatant fractions from both young and old developing cotyledons. The elongation system, converting palmityl ACP to stearyl ACP, was more active in supernatants from younger than from older developing cotyledons. In experiments with chopped tissue the elongation system appeared equally active throughout the development process. These results are consistent with the view that the de novo and elongation systems are separate entities and that the elongation system in older cotyledons is less stable to the methods used to prepare supernatant fractions.  相似文献   

4.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

5.
The objective of this study was to determine the contribution of myocardial triglycerides to overall ATP production in isolated working rat hearts. Endogenous lipid pools were initially prelabeled (pulsed) by perfusing hearts for 60 min with Krebs-Henseleit buffer containing 1.2 mM [1-14C]palmitate. During a subsequent 60-min period (chase), hearts were perfused with either no fat, low fat (0.4 mM [9,10-3H] palmitate), or high fat (1.2 mM [9,10-3H]palmitate). All buffers contained 11 mM glucose. During the "chase," 14CO2 production (a measure of endogenous fatty acid oxidation) and 3H2O production (a measure of exogenous fatty acid oxidation) were determined. Oxidative rates of endogenous fatty acids during the chase were 279 +/- 50, 88 +/- 14, and 88 +/- 8 nmol of [14C]palmitate oxidized per g dry weight.min in the no fat, low fat, and high fat groups, respectively, compared to exogenous palmitate oxidation rates of 0, 361 +/- 68, and 633 +/- 60 nmol of [3H]palmitate/g dry weight.min, in the no fat, low fat, and high fat groups, respectively. Endogenous [14C]palmitate oxidation rates were matched by loss of [14C]palmitate from endogenous myocardial triglycerides. Overall triglyceride content decreased during the no fat and low fat chase perfusion but did not change during the high fat chase. Loss of triglyceride [14C]palmitate during the high fat chase was matched by incorporation of exogenous [3H]palmitate in triglycerides. In a second series of perfusions, three groups of hearts were perfused under similar conditions, except that unlabeled palmitate was used during the "pulse" and that 11 mM [2-3H/U-14C]glucose and unlabeled palmitate was present during the chase. During the chase, both glycolysis (3H2O production) and glucose oxidation (14CO2 production) rates were measured. Rates of glucose oxidation were inversely related to the fatty acid concentration in the perfusate (1257 +/- 158, 366 +/- 40, and 124 +/- 26 nmol of glucose oxidized per min.g dry weight in the no fat, low fat, and high fat groups, respectively), while rates of glycolysis were not significantly different between these groups. Calculation of overall ATP production from both oxidative and glycolytic sources determined that even in the presence of high concentrations of fatty acids, myocardial triglyceride turnover can provide over 11% of steady state ATP production in the aerobically perfused heart. In the absence of fatty acids, myocardial triglyceride fatty acids can become the major energy substrate of the heart.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
N6′, O2′-dibutyryl adenosine 3′, 5′-cyclic monophosphoric acid, but not other cyclic nucleotides stimulates [14C]ketone body production from [14C]palmitate in isolated rat liver mitochondria. Butyrate alone, as well as unlabeled acetate, octanoate and palmitate had similar effects. This redistribution of the oxidative products of [14C]palmitate can best be explained by exceeding the capacity of the Krebs cycle and/or changes in the acetyl coenzyme A/coenzyme A ratio. In contrast to [14C]palmitate, [14C]octanoate oxidation to [14C]O2 and [14C]ketone bodies was inhibited by the addition of unlabeled fatty acids. This suggests that an additional mechanism by which unlabeled fatty acids may stimulate [14C]ketone body production is by enhancing the carnitine-dependent transport of [14C]palmitate into mitochondria.  相似文献   

7.
1. Measurements were made of milk yield, mammary blood flow and arteriovenous differences of each plasma lipid fraction, and their specific radioactivities, during the infusion of [U-14C]stearate, [U-14C]oleate, [U-14C]palmitate and [1-14C]acetate into fed lactating goats. 2. Entry rates of fatty acids into the circulation were 4·2mg./min./kg. body wt. for acetate, and 0·18, 0·28 and 0·42mg./min./kg. for stearate, oleate and palmitate respectively. Acetate accounted for 23% of the total carbon dioxide produced by the whole animal, and contributed to the oxidative metabolism of the mammary gland to about the same extent. Corresponding values for each of the long-chain acids were less than 1%. 3. There were no significant arteriovenous differences of phospholipids, sterols or sterol esters, and their fatty acid composition showed no net changes during passage through the mammary gland. 4. There were large arteriovenous differences of plasma triglycerides, and their fatty acid composition showed marked changes across the gland. The proportions of palmitate and stearate fell, and that of oleate increased. 5. Arteriovenous differences of plasma free fatty acids (FFA) were small and variable, but a large fall in the specific radioactivity of each of the long-chain acids examined indicated substantial uptake of plasma FFA, accompanied by roughly equivalent FFA release from mammary tissue. The uptake of FFA was confirmed by the extensive transfer of radioactivity into milk. The FFA of milk were similar in composition and radioactivity to the milk triglyceride fatty acids, and quite unlike plasma FFA. 6. The formation of large amounts of oleic acid (18–21 mg./min.) from stearic acid was demonstrated. 7. During the terminal stages of the [14C]acetate infusion, milk triglyceride fatty acids of chain length C4–C14 showed specific radioactivities that were 75–90% of that of blood acetate, and that of palmitate was roughly one-quarter of this value. Oleate and stearate were unlabelled. 8. The results confirmed that milk fatty acids of chain length C4–C14 arise largely from blood acetate, and palmitate is derived partly from acetate and partly from plasma triglyceride, the latter fraction being almost the sole precursor of oleate and stearate.  相似文献   

8.
Biosynthetic activity for mycolic acid occurred in the fluffy layer fraction but not in the 5000g supernatant of Bacterionema matruchotii. With [1-14C]palmitic acid as precursor for the in vitro system, the predominant product was identified as C32:0 mycolic acid by radio-gas-liquid chromatographie (radio-GLC) and gas chromatographic/mass spectroscopic analyses; if [1-14C]stearic acid was used, two major radioactive peaks appeared on GLC: one corresponding to the peak of (C34:0 + C34:1) mycolic acids and the other to (C36:0 + C36:1) mycolic acids. By pyrolysis/radio-GLC analysis, C32:0 mycolic acid synthesized by [1-14C]palmitic acid was pyrolyzed at 300 °C to form palmitaldehyde (the mero moiety) and methyl palmitate (the branch moiety). The pH optimum for the incorporation of [1-14C]palmitate into bacterionema mycolic acids was 6.4 and the reaction required a divalent cation. The in vitro system utilized myristic, palmitic, stearic and oleic acids (probably via their activated forms) well as precursors, among which myristic and palmitic acids were more effective than the rest. Avidin showed no effect on the biosynthesis of mycolic acid from 14C-palmitate whereas cerulenin, a specific inhibitor of β-ketoacyl synthetase in de novo fatty acid synthesis, inhibited the reaction at a relatively higher concentration. Thin-layer chromatographic analysis of lipids extracted from the reacting mixture without alkaline hydrolysis showed that both exogenous [1-14] fatty acid and synthesized mycolic acids were bound to an unknown compound by an alkali-labile linkage and this association seemed to occur prior to the condensation of two molecules of fatty acid.  相似文献   

9.
The storage triacylglycerols of meadowfoam (Limnanthes alba) seeds are composed essentially of C20 and C22 fatty acids, which contain an unusual Δ5 double bond. When [1-14C]acetate was incubated with developing seed slices, 14C-labeled fatty acids were synthesized with a distribution similar to the endogenous fatty acid profile. The major labeled product was cis-5-eicosenoate, with smaller amounts of palmitate, stearate, oleate, cis-5-octadecenoate, eicosanoate, cis-11-eicosenoate, docosanoate, cis-5-docosenoate, cis-13-docosenoate, and cis-5,cis-13-docosadienoate. The label from [14C]acetate and [14C]malonate was used preferentially for the elongation of endogenous oleate to produce cis-[14C]11-eicosenoate, cis-13-[14C]docosenoate, and cis-5,cis-13-[14C]docosadienoate and for the elongation of endogenous palmitate to produce the remaining C20 and C22 acyl species. The Δ5 desaturation of the preformed acyl chain and chain elongation of oleate and palmitate were demonstrated in vivo by incubation of the appropriate 1-14C-labeled free fatty acids. Using [1-14C]acyl-CoA thioesters as substrates, these enzyme activities were also demonstrated in vitro with a cell-free homogenate.  相似文献   

10.
Oxidation of palmitate by rat skeletal muscle mitochondria was determined polarographically and radiochemically under state 3 conditions. Maximal oxidation rate is reached at 4 μm palmitate, palmitoyl-CoA, or palmitoyl-l-carnitine. At palmitoyl-CoA concentrations higher than 30 μm oxidation is inhibited. At limiting substrate concentrations as used in polarographic experiments palmitate is totally degraded to CO2. At higher concentrations the palmitate molecule is only partially degraded, due to the accumulation of intermediates. Citric acid cycle intermediates, especially 2-oxoglutarate, accumulate during oxidation of palmitate in the presence of malate. It is suggested that this accumulation is stimulated by dicarboxylate exchange. The rate of formation of 14CO2 and 14C-labeled perchloric acid-soluble products is higher from [1-14C]palmitate than that from [U-14C]palmitate. This difference, which is enhanced by higher carnitine concentrations indicates incomplete oxidation during the β-oxidation in state 3. The simultaneous determination of 14CO2 production and 14C-labeled perchloric acid-soluble products appears to be a more accurate and sensitive method for measuring 14C-fatty acid oxidation than that of 14CO2 production alone.  相似文献   

11.
The ability of glyoxysomes from sunflower (Helianthusannuus L.) cotyledons to completely degrade long-chain fatty acids into their constituent acetyl units and the time courses of the appearance of acyl-CoA intermediates during β-oxidation have been studied using 14C-labelled substrates at non-saturating concentrations (1.3 to 1.8 μmol · l−1). [14C]Acetyl-CoA was formed from [18-14C]oleate metabolized at a yield of up to 80%, and from [U-14C]palmitate and [U-14C]linoleate to an extent indicating that a maximum of 80% and 30%, respectively, of the substrate β-oxidized had been degraded beyond the C4-CoA intermediate level. To obtain the latter values, an acetyl-CoA-removing system was required during β-oxidation. Constant re-oxidation of the NADH formed during the β-oxidation did not replace the effect of acetyl-CoA removal. Neither the completeness of the linoleate β-oxidation nor the rate of reaction were influenced by NADPH. Medium- and short-chain acyl-CoA intermediates were predominantly detected during β-oxidation of the long-chain substrates employed. The degradation of these intermediates appeared to be stimulated mainly in the presence of an acetyl-CoA-removing system. The time courses of the appearance of intermediates corresponded to a precursor-product relationship between intermediates of decreasing chain lengths. Received: 12 December 1997 / Accepted: 26 January 1998  相似文献   

12.
[1-14C]Octadecyl glyceryl ether did not label alkanes in the leaves of Brassica oleracea and Pisum sativum while [1-14C]octadecanol and [1-14C]octadecanoic acid readily labeled the alkanes. About 40% of the exogenous-labeled glyceryl ether was incorporated intact into choline phosphatide while 10–20% was converted into fatty acids and alcohols. [1-14C]octadecanol was not converted into alkyl glyceryl ether, but it was oxidized to the corresponding acid and then incorporated into alkanes. These results show that alkyl ether is not an intermediate in alkane biosynthesis. When [1-14C-1-3H]-octadecanol was fed to the leaves of B. oleracea and P. sativum, only the 14C and no 3H was incorporated into alkanes, ketones, and secondary alcohols. These results show that fatty alcohols are first oxidized to the acid before being incorporated into alkanes, ruling out fatty alcohol, alkyl ether, and alk-1-enyl ether as intermediates in alkane biosynthesis. The exogenous alcohols were also readily esterified into wax esters in both tissues.  相似文献   

13.
Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1-14C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2-14C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerois and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1-14C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2-14C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols.  相似文献   

14.
The viability of Streptococcus lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h was better preserved when the cells were grown in medium supplemented with oleic acid or Tween 80 (polyoxyethylene sorbitan monooleate). A pronounced change in the cellular fatty acid composition was noted when the bacteria were grown in the presence of Tween 80. In S. lactis the ratio of unsaturated to saturated fatty acids increased from 1.18 to 2.55 and in Lactobacillus sp. A-12 it increased from 0.85 to 1.67 when Tween 80 was added to the growth medium. The antibiotic cerulenin markedly inhibited the growth of lactic acid bacteria in tomato juice (TJ) medium but had almost no effect on the growth of the bacteria in TJ medium containing Tween 80 (or oleic acid). The antibiotic inhibited markedly the incorporation of [1-14C]acetate but had no inhibitory effect on the incorporation of exogenous [1-14C]oleate (or [1-14C]palmitate) into the lipid fractions of lactic acid bacteria. Thus, the fatty acid composition of lactic acid bacteria, inhibited by the antibiotic cerulenin, can be modulated by exogenously added oleic acid (or Tween 80) without the concurrent endogenous fatty acid synthesis from acetate. The data obtained suggest that cerulenin inhibits neither cyclopropane fatty acid synthesis nor elongation of fatty acid acyl intermediates. The radioactivity of cells grown in the presence of [1-14C]oleate and cerulenin was associated mainly with cyclopropane Δ19:0, 20:0 + 20:1, and 21:0 acids. As a consequence, cerulenin caused a decrease in the ratio of unsaturated to saturated fatty acids in lactic acid bacteria as compared with cells grown in TJ medium plus Tween 80 but without cerulenin. Cerulenin caused a decrease in the viability of S. lactis and Lactobacillus sp. A-12 after freezing at -17°C for 48 h only when Tween 80 was present in the growth medium. We conclude that the sensitivity of lactic acid bacteria to damage from freezing can be correlated with specific alterations in the cellular fatty acids.  相似文献   

15.
Heating cultures of Leishmania braziliensis panamensis (grown at 26°C) to 34°C for 1.5–12 h transformed the cells to an ellipsoidally shaped form. The heat treatment caused an increase in the rate of oxidation of both medium and long chain fatty acids but decreased the rate of oxidation of [1-14C]glucose. The rate of fatty acid oxidation continued to increase for times as long as 20 h after returning the cultures to 26°C. In both the promastigote and heat-induced ellipsoidal forms, the ratio of 14CO2 release from [1-14C]laurate to that from [12-14C]laurate was generally larger than four, whereas this ratio from [1-14C]oleate relative to [10-14C]oleate was approximately two. These data show that metabolic and morphological differentiation begin after a short heat treatment and that some metabolic changes may continue even after the reverse transformation is initiated. The data also suggest that either the ω-terminal portion of the fatty acids is not completely oxidized to acetyl CoA and/or that there are two functional fatty acid oxidation pathways in Leishmania.  相似文献   

16.
The ability to maintain stable cardiac function during environmental hypoxia exposure is crucial for hypoxia tolerance in animals and depends upon the maintenance of cardiac energy balance as well as the state of the heart’s extracellular environment (e.g., availability of metabolic fuels). Hypoxic depression of plasma [non-esterified fatty acids] (NEFA), an important cardiac aerobic fuel, is a common response in many species of hypoxia-tolerant fishes, including tilapia. We tested the hypothesis that decreased plasma [NEFA] is important for maintaining stable cardiac function during and following hypoxia exposure, based on the premise that continued reliance upon cardiac fatty acid metabolism under such conditions could impair cardiac function. We examined the effect of severe hypoxia exposure (PO2 < 0.2 kPa) on routine and maximum performance of the in situ perfused tilapia heart under conditions of routine (400 μmol L?1) and low (75 μmol L?1) [palmitate], which mimicked the in vivo levels of plasma [NEFA] found in normoxic and hypoxic tilapia, respectively. Under both concentrations of palmitate, the in situ tilapia heart showed exceptional hypoxic performance as a result of a high maximum glycolytic potential, confirming our previous results using a perfusate without fatty acids. We additionally provide evidence suggesting that non-contractile ATP demand is depressed in tilapia heart during hypoxia exposure. Cardiac performance during and following severe hypoxia exposure was unaffected by the level of palmitate. Thus, we conclude that hypoxic depression of plasma [NEFA] in fishes does not play a role in cardiac hypoxia tolerance.  相似文献   

17.
Evidence was obtained that Penicillium chrysogenum can produce linolenate by two biosynthetic pathways, i.e., by elongation of a shorter trienoic acid as well as direct desaturation of 18-C acids. In oxygen deficient cultures, exogenous hexadecatrienoate stimulated [1-14C]acetate incorporation into labeled octadecatrienoate and [U-14C]hexadecatrienoate with nonlabeled acetate yielded linolenate that had relatively little label in the 1-C position. With [1-14C]acetate as the only added substrate, oxygen deficiency inhibited incorporation of label into monoenoic and dienoic acids but not into trienoic acids. Incorporation of the [U-14C]linoleate into linolenate also was inhibited.In aerated cultures, 1-14C-label from laurate, palmitate, stearate, oleate, linoleate, and hexadecatrienoate was readily incorporated into linolenate. Decarboxylation and oxidation studies indicated that the longer acids were incorporated largely intact. [U-14C]Linoleate was incorporated into linolenate in which the fraction of label in 1-C was similar to that of the substrate. These data suggest that this mold has broader synthetic capabilities than do some chloroplast systems for the biosynthesis of linolenate.  相似文献   

18.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

19.
Stimulation of hepatic triglyceride synthesis and secretion by clofibrate   总被引:2,自引:0,他引:2  
Isolated hepatocytes prepared from rat and squirrel monkey livers were used to explore the mechanism of action of clofibrate, a hypolipidemic agent in current use. Addition of sodium clofibrate to cells suspended in Hanks medium stimulated the conversion of [1-14C]palmitate into esterified lipids and to 14CO2. This agent also promoted the incorporation of [2-3H]glycerol into cellular lipids when fatty acids were present in the incubation medium. Triglycerides were the major lipid class increased by the drug. Sodium clofibrate enhanced the discharge of labeled lipids into the medium from liver cells prelabeled with [2-3H]glycerol. These data suggest that clofibrate does not lower plasma triglyceride levels by interference with hepatic triglyceride production or secretion.  相似文献   

20.
The incorporation of [1-14C]palmitic or [1-14C]oleic acid into phosphatidylcholine and the effect on blood group antigen expression were examined in human erythrocytes stored at 4°C for 0-3 weeks. Blood drawn into EDTA was obtained by venepuncture from healthy volunteers. A 50% suspension of washed erythrocytes was incubated in buffer containing [1-14C]fatty acid for up to 60 min at 37°C with moderate shaking. Phosphatidylcholine was extracted and analyzed for uptake of radiolabelled fatty acid and phospholipid phosphorus content. Incorporation of [1-14C]palmitic or [1-14C]oleic acid into phosphatidylcholine was reduced during storage. The mechanism for the reduction in radiolabelled fatty acid incorporation into phosphatidylcholine was a 64% (p < 0.05) reduction in membrane phospholipase A2 activity. Although human erythrocyte membranes isolated from freshly drawn blood are capable of reacylating lysophosphatidylcholine to phosphatidylcholine, with storage, a markedly different substrate preference between palmitoyl-Coenzyme A and oleoyl-Coenzyme A was observed. Lysophosphatidylcholine acyltransferase activity assayed with oleoyl-Coenzyme A was unaltered with storage. In contrast, lysophosphatidylcholine acyltransferase activity assayed with palmitoyl-Coenzyme A was elevated 5.5-fold (p < 0.05). Despite these changes, storage of erythrocytes for up to 3 weeks did not result in altered expression of the various blood group antigens investigated. We conclude that the incorporation of palmitate and oleate into phosphatidylcholine is dramatically reduced during storage of human erythrocytes. The observed differential in vitro substrate utilization suggests that distinct acyltransferases are involved in the acylation of lysophosphatidylcholine to phosphatidylcholine in human erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号