首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in‐stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse‐ and fine‐mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse‐mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter‐input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher‐quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower‐quality litter inputs. Birch litter decomposition rate in coarse‐mesh bags was best predicted by the same environmental variables as in fine‐mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.  相似文献   

2.
Aim The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus, etc.). Location The review was conducted using data from studies across the Eurasian continent. Methods Leaf litter N concentration was compiled from 204 sets of published data (81 sets from coniferous and 123 from broadleaf forests in Eurasia). We explored the relationships between leaf litter N concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2‐fixing species were excluded from the analysis. Results Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous, evergreen and the genus Pinus. There were highly significant linear relationships between ln(N) and Temp and Precip (P < 0.001) for all available data combined, as well as for coniferous trees, broadleaf trees, deciduous trees, evergreen trees and Pinus separately. With both Temp and Precip as independent variables in multiple regression equations, the adjusted coefficient of determination () was evidently higher than in simple regressions with either Temp or Precip as independent variable. Standardized regression coefficients showed that Temp had a larger impact than Precip on litter N concentration for all groups except evergreens. The impact of temperature was particularly strong for Pinus. Conclusions The relationship between leaf litter N concentration and temperature and precipitation can be well described with simple or multiple linear regression equations for forests over Eurasia. In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale.  相似文献   

3.
1. Rainforest streams in eastern Madagascar have species‐rich and diverse endemic insect communities, while streams in deforested areas have relatively depauperate assemblages dominated by collector‐gatherer taxa. We sampled a suite of benthic insects and their food resources in three primary rainforest streams within Ranomafana National Park in eastern Madagascar and three agriculture streams in the park's deforested peripheral zone. We analysed gut contents and combined biomass and stable isotope data to examine stream community responses to deforestation in the region, which is a threatened and globally important hotspot for freshwater biodiversity. 2. Gut analyses showed that most taxa depended largely on amorphous detritus, obtained either from biofilms (collector‐gatherers) or from seston (microfilterers). Despite different resource availability in forest versus agriculture streams, diets of each taxon did not differ between stream types, suggesting inflexible feeding modes. Carbon sources for forest stream insects were difficult to discern using δ13C. However, in agriculture streams dependence on terrestrial carbon sources was low relative to algal sources. Most insect taxa with δ13C similar to terrestrial carbon sources (e.g. the stonefly Madenemura, the caddisfly Chimarra sp. and Simulium blackflies) were absent or present at lower biomass in agriculture streams relative to forest streams. Conversely, collector‐gatherers (Afroptilum mayflies) relied on algal carbon sources and had much higher biomass in agriculture streams. 3. Our analyses indicate that a few collector‐gatherer species (mostly Ephemeroptera) can take advantage of increased primary production in biofilms and consequently dominate biomass in streams affected by deforestation. In contrast, many forest stream insects (especially those in the orders Plecoptera, Trichoptera and Diptera) depend on terrestrial carbon sources (i.e. seston and leaf litter), are unable to track resource availability and consequently decline in streams draining deforested landscapes. These forest‐specialists are often micro‐endemic and particularly vulnerable to deforestation. 4. The use of consumer biomass data in stable isotope research can help detect population‐level responses to shifts in basal resources caused by anthropogenic change. We also suggest that restoration of vegetated riparian zones in eastern Madagascar and elsewhere could mitigate the deleterious effects of deforestation on sensitive, endemic stream taxa that are dependent on terrestrial carbon sources.  相似文献   

4.
1. Terrestrial plant litter entering two forest and two pasture sites on upland streams in south-eastern Australia was measured over a 2-year period using traps suspended above the streams. Laterally transported terrestrial plant litter was also determined in one stream, but found to be only 10% of the total. 2. Litter accession to traps suspended above the stream was significantly lower at both forested sites than was litter fall in the adjacent riparian vegetation. 3. Litter input was high (600–700g DW m?2yr?1) and seasonal, with 30–50% of the annual total entering the stream during December—February (summer). However, seasonality was not as great as that recorded in Northern Hemisphere deciduous forest streams. 4. Leaves comprised the largest litter component, but represented a relatively smaller proportion of the litter than is usually the case in Northern Hemisphere deciduous forest streams; in contrast bark was a relatively large proportion of the litter. 5. At the sites flowing through pasture, litter accession was about two orders of magnitude lower than at the forested sites.  相似文献   

5.
To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.  相似文献   

6.
Riparian forest plantings are a well‐established restoration technique commonly used to stabilize banks and intercept nutrient flow from adjacent agricultural fields. Tree species planted for these efforts may not reflect mature forest communities within the same region. Given contemporary research on links between biodiversity and ecosystem functioning, we conducted a leaf‐litter decomposition study to investigate how mixing of detrital resources that reflect forest community composition would regulate in‐stream leaf litter. Leaf litter bags containing material from a mature forest (Liriodendron tulipifera, Acer rubrum, Quercus rubra, full factorial treatments = 7) and a restored riparian forest (Cornus sericea, Fraxinus pennsylvanica, Platanus occidentalis, full factorial treatments = 7) were deployed in a stream reach that experienced riparian reforestation in 2004. Litter from the restored riparian community had less mass remaining (45.28 ± 2.27%) than that from the mature riparian community (54.95 ± 2.19%) after 5 weeks. In addition, mixed litter treatments in the restored riparian community had less mass remaining (40.54 ± 2.37%) than single‐species treatments (51.80 ± 4.05%), a pattern not observed in the mature forest community. Results highlight the importance of planting mixed‐species assemblages as this structure may regulate processes such as decomposition and food‐web structure, processes often not targeted in the restoration plans.  相似文献   

7.
Nitrogen uptake and turnover in riparian woody vegetation   总被引:1,自引:0,他引:1  
Chambers C  Marshall JD  Danehy RJ 《Oecologia》2004,140(1):125-134
The nutrient balance of streams and adjacent riparian ecosystems may be modified by the elimination of anadromous fish runs and perhaps by forest fertilization. To better understand nitrogen (N) dynamics within stream and riparian ecosystems we fertilized two streams and their adjacent riparian corridors in central Idaho. On each stream two nitrogen doses were applied to a swathe approximately 35 m wide centered on the stream. The fertilizer N was enriched in 15N to 18. This enrichment is light relative to many previous labeling studies, yet sufficient to yield a traceable signal in riparian and stream biota. This paper reports pre-treatment differences in 15N and the first-year N response to fertilizer within the riparian woody plant community. Future papers will describe the transfer of allochthonous litter N to the stream and its subsequent processing by stream biota. Pre-treatment 15N differed between the two creeks (P=0.0002), possibly due to residual salmon nitrogen in one of the creeks. Pre-treatment 15N of current-year needles was enriched compared to leaf litter, which was in turn enriched compared to needles aged 4 years and older. We conclude that fractionation due to retranslocation occurs in at least two phases. The first phase, which optimizes allocation of N in younger needle age classes, is distinctly different from the second, which conserves N prior to abscission. The 15N difference between creeks was eliminated by the fertilization (P=0.42). In the two dominant conifer species, Abies lasiocarpa and Picea engelmannii, most fertilizer N was found in the current-year foliage; little was found in older needles and none was detected in litter (P=0.53). The only N-fixing shrub species, Alnus incana, took up only a small amount of fertilizer N [mean percent N derived from fertilizer (%Ndff) 5.0±1.6% (SE)]. Far more fertilizer N was taken up by other deciduous shrubs (mean %Ndff=33.9±4.5%). Fertilizer N made up 25% (±4.2%) of the N in deciduous shrub litter. These results demonstrate the feasibility of light labeling with 15N and the potential influence of riparian plant species composition on stream nutrient dynamics via allochthonous leaf litter inputs.  相似文献   

8.
Abstract Leaf litter decomposition experiments were conducted on two deciduous (Nothofagus obliqua (roble)) and Nothofagus pumilio (lenga)) and one evergreen (Nothofagus dombeyi) Nothofagus (Nothofagaceae) species from a single Chilean forest in order to understand how congeneric trees with differing leaf lifespans impact the soil in which they grow. Single‐species litter samples were decomposed in a mixed hardwood forest in Ohio and in a deciduous‐evergreen Nothofagus forest in Chile. In the Ohio forest, the two deciduous species’ litters decomposed at k ≈ 1.00 per year and the evergreen at k ≈ 0.75 per year. In Chile k ranged from k ≈ 0.06 (N. obliqua) to k ≈ 0.23 (N. pumilio) per year. In both experiments, N and P were released faster from the deciduous litters than from evergreen litter. In Ohio, evergreen litter immobilized more N and P for a longer time period than did deciduous litter. As N. dombeyi stands tend to have lower available soil N and P in this particular mixed Nothofagus forest, the increased time of N and P immobilization by N. dombeyi litter suggests a feedback role of the tree itself in perpetuating low N and P soil conditions.  相似文献   

9.
10.
Although Miscanthus sinensis grasslands (Misc‐GL) and Cryptomeria japonica forest plantations (Cryp‐FP) are proposed bioenergy feedstock systems, their relative capacity to sequester C may be an important factor in determining their potential for sustainable bioenergy production. Therefore, our objective was to quantify changes in soil C sequestration 47 years after a Misc‐GL was converted to a Cryp‐FP. The study was conducted on adjacent Misc‐GL and Cryp‐FP located on Mt. Aso, Kumamoto, Japan. After Cryp‐FP establishment, only the Misc‐GL continued to be managed by annual burning every March. Mass C and N, δ13C, and δ15N at 0–30 cm depth were measured in 5 cm increments. Carbon and N concentrations, C:N ratio, δ13C, and δ15N were measured in litter and/or ash, and rhizomes or roots. Although C input in Misc‐GL by M. sinensis was approximately 36% of that in Cryp‐FP by C. japonica, mean annual soil C sequestration in Misc‐GL (503 kg C ha?1 yr?1) was higher than that in Cryp‐FP (284 kg C ha?1 yr?1). This was likely the result of larger C input from aboveground litter to soil, C‐quality (C:N ratio and lignin concentration in aboveground litter) and possibly more recalcitrant C (charcoal) inputs by annual burning. The difference in soil δ15N between sites indicated that organic C with N had greater cycling between heterotrophic microbes and soil and produces more recalcitrant humus in Misc‐GL than in Cryp‐FP. Our data indicate that in terms of soil C sequestration, maintenance of Misc‐GL may be more advantageous than conversion to Cryp‐FP in Aso, Japan.  相似文献   

11.
The objective of the present study was to evaluate the combined effect of vegetation and N deposition on microbial community composition in forest soils. For this, microbial biomass and community structure were assessed by ester linked fatty acid methyl ester (EL-FAME) analyses for 12 European forest sites representing different forest types (coniferous/deciduous) and differing in annual N loads (2?C40 kg?N?ha?1). Microbial community composition was affected by vegetation as indicated by a higher proportion of the marker for arbuscular mycorrhiza (AM) fungi??16:1 11???in deciduous forest soils (1.2%?C5.7% of total EL-FAMEs) compared to acidic coniferous forest soils (0.5%?C1.6%). The two pine forest sites investigated showed the highest proportion of fungi (up to 28% of total EL-FAMEs) and the lowest proportions of Gram-negative and Gram-positive bacteria of all study sites. Nitrogen deposition rates were highly correlated with the ratios of cyclopropyl fatty acids to their precursors (r?=?0.82; P?<?0.01) and of bacteria to fungi (r?=?0.71; P?<?0.05). The two sites with the highest N deposition (??32.3 kg?N?ha?1a?1) were depleted in the marker fatty acids for AM fungi and other fungi. Our findings suggest that vegetation has a pronounced effect on microbial community structure, but this effect is masked by high N inputs (>30 kg?N?ha?1a?1).  相似文献   

12.
Litterfall and its subsequent decomposition are important feedback mechanisms in the intrasystem cycling of nutrients in forest ecosystems. The amount of litterfall and the rate of decomposition are expected to vary with stand age and climate. Over a 2-year period, decomposition of five litter types were measured in two second-growth forest stands and one old-growth stand in the Cascade Mountains of southern Washington state, USA. Both second-growth stands were dominated by Douglas-fir [Pseudotsuga menziesii (Mirb.,) Franco] but one had a significant proportion of red alder (Alnus rubra Bong.), a nitrogen (N) fixer. The old-growth stand was dominated by Douglas-fir and western hemlock [Tsuga heterophylla (Raf.) Sarg.]. All stands had a relatively shallow layer of forest floor mass. The five litter types were placed in each stand to evaluate decomposition patterns. Despite significant differences in stand age, microclimate and mean residence times for carbon (C) and N, the rates of litter mass loss varied only slightly between sites. The relative order of species litter mass loss was: vine maple ≫ salal = western hemlock > Douglas-fir (from the youngest stand) > Douglas-fir (from the N rich stand with red alder). The initial litter lignin concentration, not lignin:N, was the primary determinant of decomposition rates, although the initial N concentration was the predictor for mass loss after 2 years in the N rich Douglas-fir-alder stand. All litter types showed immobilization of N for nearly 2 years. Data for Douglas-fir litter suggest that higher levels of N may retard decomposition of tissues with greater amounts of lignified material. The retention of N by the litter appeared influenced by the nutrient capital of the stands as well as the forest floor C:N ratio. Decomposition was minimal during the cold winter months, but displayed a definitive peak period during early Fall with wet weather, warm soils, and fungal activity. Thus, long-term climatic change effects on forest floor C storage may depend more on changes in seasonality of precipitation changes than just temperature changes.  相似文献   

13.
为了解亚热带不同演替阶段次生林地的凋落物持水特性规律,选取湖南大山冲森林公园保存完好的三种亚热带典型次生林地,按两月一次采集新近的凋落物并采用水浸泡法测定凋落物持水量、持水率和吸水速率,对比分析不同森林类型凋落物持水性差异及其与凋落物碳氮凋落量的关系。结果表明:(1)三种次生林地凋落物量及组成均表现出特有的变化规律。针叶林和常绿阔叶林凋落物量以夏季5-9月最大,落叶阔叶林凋落物则以春、秋两个季节最大;(2)三种次生林地凋落物的饱和持水量、半饱和时间以及与水亲和力均呈现显著季节性变化特征。针叶林凋落物饱和持水量在5-7月达到最高为(59.68±2.91) g/m2,常绿阔叶林凋落物饱和持水量则在9月达到最高,落叶阔叶林凋落物饱和持水量在11月份达到最高为(190.60±8.81) g/m2;三种次生林凋落物的半饱和时间均以11月份为最低,且落叶阔叶林凋落物半饱和时间比其他两种次生林地更低,全年平均(0.62±0.12) h;凋落物的水亲和力系数,全年均以落叶阔叶林最大为142.72±26.12;(3)落叶阔叶林凋落物饱和持水率全年显著高于其他两种次生林(P<0.01),且针叶林和落叶阔叶林凋落物饱和持水率均在11月份达到最大值;(4)落叶阔叶林凋落物吸水速率A值显著低于其他两种次生林(P<0.01),而针叶林凋落物吸水速率系数B值显著高于其他两种次生林(P<0.01);(5)凋落物饱和持水量与凋落物水亲和力和饱和持水率存在显著正相关关系,与凋落物凋落碳氮总量同样存在显著正相关关系;凋落物饱和持水率与凋落物半饱和时间、吸水速率系数A和B值存在显著负相关,与凋落物碳含量和C/N比极显著负相关,与凋落物氮含量极显著正相关(P<0.01)。综上,不同次生林类型凋落物持水性存在显著差异,凋落物持水性与凋落物碳氮量存在显著联系,该研究为深入探讨森林生态环境效应提供了支撑,丰富了森林凋落物持水特性的研究理论。  相似文献   

14.
15.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

16.
Riparian vegetation typically provides substantial allochthonous material to aquatic ecosystems where micro-organisms can play an important role in organic matter degradation which can support consumer biomass. We examined the effects of leaf litter quality (e.g., leaf nutrients, lignin and cellulose content), leaf species mixing, and microbial community diversity on in-stream breakdown rates of litter from dominant riparian trees (Melaleuca argentea, M. leucadendra, and Nauclea orientalis) in both a perennial and intermittent river in Australia’s wet-dry tropics. Leaf mass remaining after 82 days of in-stream incubation was negatively correlated (P < 0.05) with initial leaf N and P content while initial lignin and cellulose content had no statistically significant effect. Breakdown rates of incubated leaves of both Melaleuca and Nauclea were significantly higher in mixed litter bags compared with single species litter bags. Although it was expected that leaf N content would decrease from initial levels during decomposition, we found either similar or slightly higher N content following in-stream incubation suggesting microbial colonisation increased overall N content. Stable isotopes of δ13C and δ15N for the major sources and consumers in both rivers provide evidence that leaf litter was an important macroinvertebrate food source in the perennial river where heavy shading may limit algal production. However, in the intermittent river where riparian cover was low, benthic algae were the major organic carbon source for consumers. Our findings suggest that riparian tree species influence rates of in-stream organic matter processing, microbial community composition, and aquatic food web dynamics in tropical wet-dry streams.  相似文献   

17.
Sugi (Cryptomeria japonica D. Don) is one of the most important evergreen coniferous plantation species in Japan. Much of the riparian forest that was originally dominated by deciduous broadleaf trees has been converted into sugi plantations. The present study investigated the seasonality of leaf-litter input and leaf dispersal to streams to assess the effects of converting riparian forest to sugi plantations. The seasonality of leaf-litter input was assessed at three streams in Nagoya University Forest. At one stream dominated by deciduous broadleaf trees, input was limited to autumn. At two streams in a sugi plantation, input was prolonged from autumn to early spring, and was dominated by sugi needles from winter to early spring. These results suggest that sugi plantations alter the seasonality of leaf-litter input from riparian forests and affect stream ecosystems. Leaf dispersal was assessed by considering the relationship between leaf dispersal distance from three forest layers to the stream and leaf-litter input into two streams. The maximum leaf dispersal distance was 26–28 m for deciduous broadleaf trees from mid-October to November and 10–12 m for sugi needles from December to April. Leaf dispersal distance depended on the tree species. Four species of deciduous broadleaf tree showed greater leaf dispersal than that of sugi. The mean weight of individual sugi needles was higher than that of the broadleaf trees’ leaves, and dispersal depended on strong winds in winter and early spring. Although the leaf dispersal distance from the understory was within 2–4 m, it could be a significant source of leaf-litter input to streams.  相似文献   

18.
Abstract. Vegetation maps serve as the basis for spatial analysis of forest ecosystems and provide initial information for simulations of forest landscape change. Because of the limitations of current remote sensing technology, it is not possible to directly measure forest understory attributes across large spatial extents. Instead we used a predictive vegetation mapping approach to model Tsuga heterophylla and Picea sitchensis seedling patterns in a 3900‐ha landscape in the Oregon Coast Range, USA, as a function of Landsat TM imagery, aerial photographs, digital elevation models, and stream maps. Because the models explained only moderate amounts of variability (R2 values of 0.24–0.56), we interpreted the predicted patterns as qualitative spatial trends rather than precise maps. P. sitchensis seedling patterns were tightly linked to the riparian network, with highest densities in coastal riparian areas. T. heterophylla seedlings exhibited complex patterns related to topography and overstory forest cover, and were also spatially clustered around patches of old‐growth forest. We hypothesize that the old growth served as refugia for this fire‐sensitive species following wildfires in the late 19th and early 20th centuries. Low levels of T. heterophylla regeneration in hardwood‐dominated forests suggest that these patches may succeed to shrublands rather than to conifer forest. Predictive models of seedling patterns could be developed for other landscapes where georeferenced inventory plots, remote sensing data, digital elevation models, and climate maps are available.  相似文献   

19.
Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis to examine (1) the relative importance of terrestrial and algal‐based food resources to shrimps and other consumers and determine (2) if the relative importance of these food resources changed along the stream continuum. We examined δ15N and δ13C signatures of leaves, algae, macrophytes, biofilm, insects, snails, fishes, and shrimps at three sites (300, 90, and 10 m elev.) along the Río Espíritu Santo, which drains the Caribbean National Forest, Puerto Rico. Isotope signatures of basal resources were distinct at all sites. Results of two‐source δ13C mixing models suggest that shrimps relied more on algal‐based carbon resources than terrestrially derived resources at all three sites along the continuum. This study supports other recent findings in tropical streams, demonstrating that algal‐based resources are very important to stream consumers, even in small forested headwater streams. This study also demonstrates the importance of doing assimilation‐based analysis (i.e., stable isotope or trophic basis of production) when studying food webs.  相似文献   

20.
Field studies to examine the influence of woody debris on rainbow trout (Oncorhynchus mykiss) abundance through habitat modification were conducted in two small streams, the Horonai and Uenae streams, running through secondary deciduous forest in south-western Hokkaido, northern Japan. Reach-based woody debris volume (total woody debris volume per 100 m2 of study reach) was significantly correlated with the total basal area of riparian stands along the margins of the Horonai stream, but no significant relationship was evident between them for the Uenae stream. This inconsistency between the streams was considered to be a result of the difference in stream size (width, depth and discharge). Woody debris was the principal agent for pool formation, although it had a far smaller volume than that found in streams draining old-growth coniferous forest in North America, where most of the previous studies have been carried out. Untransported debris pieces of larger volume more effectively contributed to pool formation than smaller transported pieces. The volume of individual debris scour pools was positively correlated with the volume of woody debris associated with each. Similarly, reach-based pool volume increased with total woody debris volume, but the relationship was less clear in the Uenae stream, having more abundant transported woody debris than the Horonai stream. The biomass of rainbow trout in individual pools, which were regarded as the most preferred habitat type for stream salmonids, was correlated with pool volume. A positive relationship also existed between reach-based standing crop and pool volume. These results revealed that secondary deciduous forest, like old-growth coniferous forest, plays an important role in enhancing the carrying capacity for rainbow trout by supplying woody debris which promoted preferred habitat formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号