首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the molecular epidemiology of noroviruses (NoVs) in bivalves residing in freshwater rivers, we detected, quantified and phylogenetically analyzed the NoV genome in purified concentrates obtained from the gills and digestive diverticula of Corbicula fluminea in a freshwater river in Gunma Prefecture, Japan. We detected the NoV genome in 35 of the 58 C. fluminea samples. Based on our phylogenetic analysis, the NoV genome detected in the samples was classified into 4 genotypes (GI/1, GI/2, GI/3 and GI/4) in genogroup I and 5 genotypes (GII/3, GII/4, GII/5, GII/8 and GII/12) in genogroup II. The phylogenetic tree showed wide genetic diversity among the genogroups. In addition, more than 10(4) copies of the NoV genome were detected in 2 of 35 samples. These results suggest that the freshwater bivalve C. fluminea is a reservoir for NoVs, similar to seawater bivalves such as oysters.  相似文献   

2.
3.
4.
Norovirus (NoV) is a causative agent of acute gastroenteritis. NoV binds to histo-blood group antigens (HBGAs), namely, ABH antigens and Lewis (Le) antigens, in which type 1 and type 2 carbohydrate core structures constitute antigenically distinct variants. Norwalk virus, the prototype strain of norovirus, binds to the gastroduodenal junction, and this binding is correlated with the presence of H type 1 antigen but not with that of H type 2 antigen (S. Marionneau, N. Ruvoen, B. Le Moullac-Vaidye, M. Clement, A. Cailleau-Thomas, G. Ruiz-Palacois, P. Huang, X. Jiang, and J. Le Pendu, Gastroenterology 122:1967-1977, 2002). It has been unknown whether NoV distinguishes between the type 1 and type 2 chains of A and B antigens. In this study, we synthesized A type 1, A type 2, B type 1, and B type 2 pentasaccharides in vitro and examined the function of the core structures in the binding between NoV virus-like particles (VLPs) and HBGAs. The attachment of five genogroup I (GI) VLPs from 5 genotypes and 11 GII VLPs from 8 genotypes, GI/1, GI/2, GI/3, GI/4, GI/8, GII/1, GII/3, GII/4, GII/5, GII/6, GII/7, GII/12, and GII/14, to ABH and Le HBGAs was analyzed by enzyme-linked immunosorbent assay-based binding assays and Biacore analyses. GI/1, GI/2, GI/3, GI/4, GI/8, and GII/4 VLPs were more efficiently bound to A type 2 than A type 1, and GI/8 and GII/4 VLPs were more efficiently bound to B type 2 than B type 1, indicating that NoV VLPs distinguish between type 1 and type 2 carbohydrates. The dissociation of GII/4 VLPs from B type 1 was slower than that from B type 2 in the Biacore experiments; moreover, the binding to B type 1 was stronger than that to B type 2 in the ELISA experiments. These results indicated that the type 1 carbohydrates bind more tightly to NoV VLPs than the type 2 carbohydrates. This property may afford NoV tissue specificity. GII/4 is known to be a global epidemic genotype and binds to more HBGAs than other genotypes. This characteristic may be linked with the worldwide transmission of GII/4 strains. GI/2, GI/3, GI/4, GI/8, GII/4, and GII/7 VLPs bound to Le(a) expressed by nonsecretors, suggesting that NoV can infect individuals regardless of secretor phenotype. Overall, our results indicated that HBGAs are important factors in determining tissue specificity and the risk of transmission.  相似文献   

5.
Although clinical epidemiology lists human enteric viruses to be among the primary causes of acute gastroenteritis in the human population, their circulation in the environment remains poorly investigated. These viruses are excreted by the human population into sewers and may be released into rivers through the effluents of wastewater treatment plants (WWTPs). In order to evaluate the viral diversity and loads in WWTP effluents of the Paris, France, urban area, which includes about 9 million inhabitants (approximately 15% of the French population), the seasonal occurrence of astroviruses and noroviruses in 100 WWTP effluent samples was investigated over 1 year. The coupling of these measurements with a high-throughput sequencing approach allowed the specific estimation of the diversity of human astroviruses (human astrovirus genotype 1 [HAstV-1], HAstV-2, HAstV-5, and HAstV-6), 7 genotypes of noroviruses (NoVs) of genogroup I (NoV GI.1 to NoV GI.6 and NoV GI.8), and 16 genotypes of NoVs of genogroup II (NoV GII.1 to NoV GII.7, NoV GII.9, NoV GII.12 to NoV GII.17, NoV GII.20, and NoV GII.21) in effluent samples. Comparison of the viral diversity in WWTP effluents to the viral diversity found by analysis of clinical data obtained throughout France underlined the consistency between the identified genotypes. However, some genotypes were locally present in effluents and were not found in the analysis of the clinical data. These findings could highlight an underestimation of the diversity of enteric viruses circulating in the human population. Consequently, analysis of WWTP effluents could allow the exploration of viral diversity not only in environmental waters but also in a human population linked to a sewerage network in order to better comprehend viral epidemiology and to forecast seasonal outbreaks.  相似文献   

6.
7.
8.
This 15-year study aimed to determine the role of the main viruses responsible for acute infantile gastroenteritis cases in a day care center in the city of Rio de Janeiro, Brazil. From 1994 to 2008, 539 fecal samples were obtained from 23 outbreaks as well as sporadic cases that occurred in this period. The detection of Rotavirus group A (RVA), norovirus (NoV) and astrovirus (AstV) was investigated both by classical and molecular methods of viral detection. RVA was detected by enzymatic immune assay and/or polyacrylamide gel electrophoresis and genotyped by using semi-nested multiplex PCR. NoV and AstV were subsequently tested by real time PCR in all RVA-negative samples and genotyped throughout genome sequencing. Three protocols for molecular characterization of NoV nucleotide sequencing were performed with the partial nucleotide sequencing of genomic regions known as region B (polymerase gen), C and D (capsid gen).Viruses were identified in 47.7% (257/539) of the cases, and the detection rates of RVA, NoV and AstV in16.1% (87/539), 33.4% (151/452), and 6.3% (19/301), respectively. Most gastroenteritis cases were reported in autumn and winter, although NoV presented a broader monthly distribution. Viruses' detection rates were significantly higher among children aged less than 24 months old, although NoV cases were detected in all age groups. RVA genotypes as G1P[8], G9P[8], G2P[4], G3P[8] and G1+G3P[8] and RVA was no longer detected after 2005. NoV characterization revealed genotypes variability circulating in the period as GI.2, GI.3, GI.8 GII.2, GII.3, GII.4, GII.4 variants 2001 and 2006b, GII.6, GII.7, GII.12 and GII.17. AstV genotypes 1, 2, 4 and 5 were also characterized. Those data demonstrate the impact of NoV infection in cases of infantile gastroenteritis, surpassing RVA infection responsible for high morbidity rate in children under five years old.  相似文献   

9.
10.
Norovirus (NoV) constitutes the second most common viral pathogen causing pediatric diarrhea after rotavirus. In Africa, diarrhea is a major health problem in children, and yet few studies have been performed regarding NoV. The association of histo-blood group antigens (HBGA) and susceptibility to NoV infection is well established in Caucasian populations with non-secretors being resistant to many common NoV strains. No study regarding HBGA and NoV susceptibility has yet been performed in Africa. We collected 309 stool and 208 saliva samples from diarrheal children in Ouagadougou, Burkina Faso; May 2009 to March 2010. NoV was detected using real-time PCR, and genotyped by sequencing. Saliva samples were ABO, Lewis and secretor phenotyped using in house ELISA assays. NoV was detected in 12% (n = 37) of the samples. The genotype diversity was unusually large; overall the 37 positive samples belonged to 14 genotypes. Only children <2 years of age were NoV positive and the GII.4 NoVs were more frequent in the late dry season (Jan-May). NoV infections were observed less in children with the secretor-negative phenotype or blood group A (OR 0.18; p = 0.012 and OR 0.31; p = 0.054; respectively), with two non-secretors infected with genotypes GII.7 and GII.4 respectively. Lewis-negative (Lea−b−) children, representing 32% of the study population, were susceptible to GII, but were not infected with any NoV GI. GII.4 strains preferentially infected children with blood group B whereas secretor-positive children with blood group O were infected with the largest variety of genotypes. This is the first study identifying host genetic factors associated with susceptibility to NoV in an African population, and suggests that while the non-secretor phenotype provides protection; the Lewis b antigen is not necessary for GII infection.  相似文献   

11.
The molecular epidemiology of norovirus infections was studied in food handlers without any symptoms from January to December 2015 in Busan city, Korea. A total of 2,174 fecal specimens from asymptomatic food handlers were analyzed, and 2.3% (49/2,174) were norovirus-positive. Fourteen of 335 samples (4.2%) were positive in January; fifteen of 299 samples (5.0%) in February, and seven of 189 samples (3.7%) in December. However, norovirus was rarely detected in other months. From sequencing analysis, 11 genotypes (five GI and six GII genotypes) were detected. Among the 42 capid gene sequences identified, 14 were from the GI genogroup, while 28 were from the GII genogroup. The most commonly detected genotype was GII.17, comprising 15 (35.7%) of positive samples. From January 2012 to December 2015, 5,138 samples were collected from gastroenteritis patients and outbreaks in Busan. The most detected genotype in 2012, 2013, and 2014 was GII.4 (121, 24, and 12 cases, respectively), but in 2015, GII.17 (25 cases) was the most common. The GII.4 genotype was the major cause of acute gastroenteritis from 2012 to 2014, but the GII.17 genotype became the most prevalent cause in 2015. Continued epidemiological surveillance of GII.17 is needed, together with assessment of the risk of norovirus infection.  相似文献   

12.
Human noroviruses (NoV) were quantified and characterized in an 18 month survey conducted along the Llobregat river catchment in Spain. Sample types included freshwater, untreated and treated wastewater and drinking water. High NoV genome copy numbers were reported, reaching up to 10(6) l(-1) and 10(9) l(-1) in freshwater and raw sewage respectively. In both types of samples, GII NoV genome copies outnumbered those of GI, although without significance. All samples of semi-treated and treated drinking water were negative for NoV. A clear seasonality of NoV occurrence was observed both in river water and sewage samples, with significantly higher genome copy numbers in the cold than in the warm months period. Mean NoV log reduction rates after biological treatment of sewage were 2.2 and 3.1 for GI and GII respectively. A total of 77 NoV strains isolated in the Llobregat river catchment could be phylogenetically characterized, 44 belonging to GI and 33 to GII. The most prevalent genotype was GI.4, followed by GII.4 and GII.21. Several variants of the pandemic GII.4 strain were detected in the environment, corroborating their circulation among the population.  相似文献   

13.
14.
Norovirus (NoV) and human astrovirus (HAstV) are important causative agents of acute gastroenteritis in children and adults. They are comprised of multiple genotypes and attention should be paid to genotype changes or emergence of new genetic variants. To study the prevalence and diversity of NoV GI, GII, and HAstV circulating in eastern China, we conducted a three-year environmental surveillance in a coastal city of Yantai. Thirty-six sewage samples were collected, processed, and examined for the presence of viral genomes by PCR. The results showed that NoV GI, GII, and HAstV were detected in all 36 samples. Six NoV GI genotypes, 11 NoV GII genotypes, and 5 HAstV serotypes were identified; GI.6, GII.17, and HAstV-5 were the most prevalent types, respectively. Persistent existence of NoV GII.17 Kawasaki 308 variant was observed during whole study period. Phylogenetic analysis reflected multiple transmission lineages in local population for both viruses. Our results reflect continuous presence of enteric viruses in sewage, improve our understanding on their molecular epidemiology, and demonstrate surveillance on sewage is an effective approach in understanding the local circulation of enteric viruses.  相似文献   

15.
BackgroundThe epidemiology of cases of acute gastroenteritis (AGE) of viral etiology is a relevant public health issue. Due to underreporting, the study of outbreaks is an accepted approach to investigate their epidemiology. The objective of this study was to investigate the epidemiological characteristics of AGE outbreaks due to norovirus (NoV) and sapovirus (SV) in Catalonia.ResultsA total of 101 outbreaks were registered affecting a total of 2756 persons and 12 hospitalizations (hospitalization rate: 0.8x1,000,000 persons-year); 49.5% of outbreaks were foodborne, 45.5% person to person and 5% waterborne. The distribution of outbreaks according to the setting showed a predominance of catering services (39.6%), nursing homes and long term care facilities (26.8%) and schools (11.9%). The median number of cases per outbreak was 17 (range 2–191). The total Incidence rate (IR) was 18.3 per 100,000 persons-years (95%CI: 17.6–19.0). The highest IR was in persons aged ≥65 years (43.6x100,000 (95% CI: 41.0–46.2)) (p<0.001). A total of 1065 samples were analyzed with a positivity rate of 60.8%. 98% of positive samples were NoV (GII 56.3%; GI 4.2%; GII+GI 4.2%; non- typable 33.0%). SV was identified in two person-to-person transmission outbreaks in children.ConclusionsThese results confirm the relevance of viral AGE outbreaks, both foodborne and person-to-person, especially in institutionalized persons. SV should be taken into account when investigating viral AGE outbreaks.  相似文献   

16.
The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks.  相似文献   

17.
Norovirus (NoV) infections are a major cause of acute gastroenteritis outbreaks around the world. In Brazil, the surveillance system for acute diarrhoea does not include the diagnosis of NoV, precluding the ability to assess its impact on public health. The present study assessed the circulation of NoV genotypes in different Brazilian states by partial nucleotide sequencing analysis of the genomic region coding for the major capsid viral protein. NoV genogroup II genotype 4 (GII.4) was the prevalent (78%) followed by GII.6, GII.7, GII.12, GII.16 and GII.17, demonstrating the great diversity of NoV genotypes circulating in Brazil. Thus, this paper highlights the importance of a virological surveillance system to detect and characterize emerging strains of NoV and their spreading potential.  相似文献   

18.
Chan MC  Lee N  Ho WS  Law CO  Lau TC  Tsui SK  Sung JJ 《Journal of virology》2012,86(2):1227-1232
We report sequence hypervariability in the viral protein 1 (VP1) interaction domain of VP2 in the norovirus (NoV) genogroup II genotype 4 (GII.4) lineage on 3 levels: (i) the global evolution of pandemic/epidemic strains from the mid-1970s through post-2006, (ii) the local emergence of an epidemic strain, and (iii) an immunocompromised patient chronically shedding NoV. When a quantitative yeast two-hybrid assay was used, VP2 was found to interact with VP1 in a time-ordered, strain-dependent manner among 3 NoV GII.4 strains. Our findings suggest that VP1 and VP2 may covary in virus evolution and that sequence hypervariability of VP2 may be functionally driven. Further investigations are warranted.  相似文献   

19.
Infection caused by noroviruses (NoVs) is one of the most important causes of acute gastroenteritis in humans worldwide. To gain insight into the epidemiology of and genetic variation in NoV strains, stool samples collected from 18 outbreaks of acute gastroenteritis in Huzhou, China, between January 2008 and December 2012 were analyzed. Samples were tested for NoVs by real-time RT-PCR. Partial sequences of the RNA- dependent RNA polymerase (RdRp) and capsid gene of the positive samples were amplified by RT-PCR, and the PCR products were sequenced and used for phylogenetic analysis. NoVs were found to be responsible of 88.8% of all nonbacterial acute gastroenteritis outbreaks in Huzhou over the last 5 years. Genogroup II outbreaks largely predominated and represented 93% of all outbreaks. A variety of genotypes were found among genogroups I and II, including GI.4, GI.8, GII.4, and GII.b. Moreover, phylogenetic analyses identified two recombinant genotypes (polymerase/capsid): GI.2/GI.6 and GII.e/GII.4 2012 Sydney. GII.4 was predominant and involved in 8/10 typed outbreaks. During the study period, GII.4 NoV variants 2006b, New Orleans 2009, and Sydney 2012 were identified. This is the first report of the detection of GII.4 New Orleans 2009 variant, GII.e/GII.4 Sydney 2012 recombinant in outbreaks of acute gastroenteritis in China.  相似文献   

20.
Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号