首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interleukin-1 (IL-1) family is one of the first described cytokine families and consists of eight cytokines (IL-1β, IL-1α, IL-18, IL-33, IL-36α, IL-36β, IL-36γ and IL-37) and three receptor antagonists (IL-1Ra, IL-36Ra and IL-38). The family members are known to play an essential role in inflammation. The importance of inflammation in cancer has been well established in the past decades. This review sets out to give an overview of the role of each IL-1 family member in cancer pathogenesis and show their potential as potential anticancer drug candidates. First, the molecular structure is described. Next, both the pro- and anti-tumoral properties are highlighted. Additionally, a critical interpretation of current literature is given. To conclude, the IL-1 family is a toolbox with a collection of powerful tools that can be considered as potential drugs or drug targets.  相似文献   

2.
Daugaard M  Rohde M  Jäättelä M 《FEBS letters》2007,581(19):3702-3710
The human heat shock protein 70 (Hsp70) family contains at least eight homologous chaperone proteins. Endoplasmatic reticulum and mitochondria have their specific Hsp70 proteins, whereas the remaining six family members reside mainly in the cytosol and nucleus. The requirement for multiple highly homologous although different Hsp70 proteins is still far from clear, but their individual and tissue-specific expression suggests that they are assigned distinct biological tasks. This concept is supported by the fact that mice knockout for different Hsp70 genes display remarkably discrete phenotypes. Moreover, emerging data suggest that individual Hsp70 proteins can bring about non-overlapping and chaperone-independent functions essential for growth and survival of cancer cells. This review summarizes our present knowledge of the individual members of human Hsp70 family and elaborate on the functional differences between the cytosolic/nuclear representatives.  相似文献   

3.
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.  相似文献   

4.
Cell death is an important physiological regulator during development, tissue homeostasis and stress response but it is also a protective tumor suppressive mechanism. Tumor cells almost universally acquire the ability to evade cell death pathways that in normal cells act as a protective mechanism to remove damaged cells. As a result, a population of death-resistant cells with accumulating genetic and epigenetic abnormalities contributes to malignant transformation.  相似文献   

5.
Mitochondria and reactive oxygen species in renal cancer   总被引:3,自引:0,他引:3  
Hervouet E  Simonnet H  Godinot C 《Biochimie》2007,89(9):1080-1088
  相似文献   

6.
Budding of transport vesicles from the endoplasmic reticulum in yeast requires the formation, at the budding site, of a coat protein complex (COPII) that consists of two heterodimeric subcomplexes (Sec23p/Sec24p and Sec13p/Sec31p) and the Sar1 GTPase. Sec24p is an essential protein and involved in cargo selection. In addition to Sec24p, the yeast Saccharomyces cerevisiae expresses two non-essential Sec24p-related proteins, termed Sfb2p (product of YNL049c) and Sfb3p/Lst1p (product of YHR098c). We here show that Sfb2p and, less efficiently, Sfb3p/Lst1p are able to bind, like Sec24p, the integral membrane cargo protein Sed5p. We also demonstrate that Sfb2p, like Sec24p and Sfb3p/Lst1p, forms a complex with Sec23p in vivo. Whereas the deletion of SFB2 did not affect transport kinetics of various proteins, the maturation of the glycolipid-anchored plasma membrane protein Gas1p was differentially impaired in sfb3 knock-out cells. We generated several conditional-lethal sec24 mutants that, combined with null alleles of SFB2 and SFB3/LST1, led to a complete block of transport between the endoplasmic reticulum and the Golgi (sec24-11/Deltasfb2) or to cell death (sec24-11/Deltasfb3). Of the Sec24p family members, Sfb2p is the least abundant at steady state, but high intracellular concentrations of Sfb2p can rescue sec24 mutants under restrictive conditions. The data presented strongly suggest that the Sec24p-related proteins function as COPII components.  相似文献   

7.
Human Papillomavirus (HPV) remains one of the most commonly contracted sexually transmitted diseases around the world. There are a multitude of HPV types, some of which may never present any symptoms. Others, however, are considered high-risk types, which increase the chance of the person infected to develop cancer. In recent years, the utilization of nanotechnology has allowed researchers to employ and explore the use of nanoparticles in immunotherapies.The new nanoparticle frontier has opened many doors in this area of research as a form of prevention, diagnosis, and treatment in cancers resulting from HPV. This review will provide a brief background of HPV, its relationship to head and neck cancer (HNC) and present some insight into the field of immunotherapeutic nanoparticles.  相似文献   

8.
Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.  相似文献   

9.
Mitochondria, the main source of reactive oxygen species (ROS), are required for cell survival; yet also orchestrate programmed cell death (PCD), referring to apoptosis and autophagy. Autophagy is an evolutionarily conserved lysosomal degradation process implicated in a wide range of pathological processes, most notably cancer. Accumulating evidence has recently revealed that mitochondria may generate massive ROS that play the essential role for autophagy regulation, and thus sealing the fate of cancer cell. In this review, we summarize mitochondrial function and ROS generation, and also highlight ROS-modulated core autophagic pathways involved in ATG4–ATG8/LC3, Beclin-1, p53, PTEN, PI3K–Akt–mTOR and MAPK signaling in cancer. Therefore, a better understanding of the intricate relationships between mitochondrial ROS and autophagy may ultimately allow cancer biologists to harness mitochondrial ROS-mediated autophagic pathways for cancer drug discovery.  相似文献   

10.
Engineered proteins are revolutionizing immunotherapy, but advances are still needed to harness their full potential. Traditional protein engineering methods use naturally existing proteins as a starting point, and therefore, are intrinsically limited to small alterations of a protein's natural structure and function. Conversely, computational de novo protein design is free of such limitation, and can produce a virtually infinite number of novel protein sequences, folds, and functions. Recently, we used de novo protein engineering to create Neoleukin-2/15 (Neo-2/15), a protein mimetic of the function of both interleukin-2 (IL-2) and interleukin-15 (IL-15). To our knowledge, Neo-2/15 is the first de novo protein with immunotherapeutic activity, and in murine cancer models, it has demonstrated enhanced therapeutic potency and reduced toxicity compared to IL-2. De novo protein design is already showcasing its tremendous potential for driving the next wave of protein-based therapeutics that are explicitly engineered to treat disease.  相似文献   

11.
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.  相似文献   

12.
Increased production of reactive oxygen species (ROS) by the mitochondrion has been implicated in the pathogenesis of numerous liver diseases. However, the exact sites of ROS production within liver mitochondria and the electron transport chain are still uncertain. To determine the sites of ROS generation in liver mitochondria we evaluated the ability of a variety of mitochondrial respiratory inhibitors to alter the steady state levels of ROS generated within the intact hepatocyte and in isolated mitochondria. Treatment with myxothiazol alone at concentrations that significantly inhibit respiration dramatically increased the steady-state levels of ROS in hepatocytes. Similar results were also observed in isolated mitochondria oxidizing succinate. Coincubation with antimycin or rotenone had no effect on myxothiazol-induced ROS levels. Myxothiazol stimulation of ROS was mitochondrial in origin as demonstrated by the colocalization of MitoTracker Red and dichlorofluorescein staining using confocal microscopy. Furthermore, diphenyliodonium, an inhibitor that blocks electron flow through the flavin mononucleotide of mitochondrial complex I and other flavoenzymes, significantly attenuated the myxothiazol-induced increase in hepatocyte ROS levels. Together, these data suggest that in addition to the ubiquinone-cytochrome bc(1) complex of complex III, several of the flavin-containing enzymes or iron-sulfur centers within the mitochondrial electron transport chain should also be considered sites of superoxide generation in liver mitochondria.  相似文献   

13.
Traditional therapies for cancer include surgery, chemotherapy, and radiation. Chemotherapy has widespread systemic cytotoxic effects against tumor cells but also affects normal cells. Radiation has more targeted local cytotoxicity but is limited to killing cells in the radiation field. Immunotherapy has the potential for systemic, specific killing of tumor cells. However, if the immune response is specific to a single antigen, tumor evasion can occur by down-regulation of that antigen. An immunotherapy approach that induces polyvalent immunity to autologous tumor antigens can provide a personalized vaccine with less potential for immunologic escape. A cytotoxic immunotherapy strategy creates such a tumor vaccine in situ. Immunogenic tumor cell death provides tumor antigen targets for the adaptive immune response and stimulates innate immunity. Attraction and activation of antigen presenting cells such as dendritic cells is important to process and present tumor antigens to T cells. These include cytotoxic T cells that kill tumor cells and T cells which positively and negatively regulate immunity. Tipping the balance in favor of anti-tumor immunity is an important aspect of an effective strategy. Clinically, immunotherapies may be most effective when combined with standard therapies in a complimentary way. An example is gene-mediated cytotoxic immunotherapy (GMCI) which uses an adenoviral vector, AdV-tk, to deliver a cytotoxic and immunostimulatory gene to tumor cells in vivo in combination with standard therapies creating an immunostimulatory milieu. This approach, studied extensively in animal models and early stage clinical trials, is now entering a definitive Phase 3 trial for prostate cancer.  相似文献   

14.
15.
The Myc proto-oncoprotein coordinates a number of normal physiological processes necessary for growth and expansion of somatic cells by controlling the expression of numerous target genes. Deregulation of MYC as a consequence of carciogenic events enforces cells to undergo a transition to a hyperproliferative state. This increases the risk of additional oncogenic mutations that in turn can result in further tumor progression. However, Myc activation also provokes intrinsic tumor suppressor mechanisms including apoptosis, cellular senescence and DNA damage responses that act as barriers for tumor development and therefore needs to be overcome during tumorigenesis. Myc thus possesses two seemingly contradictory “faces” here referred to as “Yin and Yang”. Observations that many tumor suppressor pathways remain intact but are latent in tumor cells opens the possibility that pharmacological inhibition of the Yin or activation of the Yang functions can prevail and offer new attractive approaches for treating diverse types of cancer.  相似文献   

16.
17.
The Warburg effect and its cancer therapeutic implications   总被引:1,自引:0,他引:1  
Increased aerobic glycolysis in cancer, a phenomenon known as the Warburg effect, has been observed in various tumor cells and represents a major biochemical alteration associated with malignant transformation. Although the exact molecular mechanisms underlying this metabolic change remain to be elucidated, the profound biochemical alteration in cancer cell energy metabolism provides exciting opportunities for the development of therapeutic strategies to preferentially kill cancer cells by targeting the glycolytic pathway. Several small molecules capable of inhibiting glycolysis in experimental systems have been shown to have promising anticancer activity in vitro and in vivo. This review article provides a brief summary of our current understanding of the Warburg effect, the underlying mechanisms, and its influence on the development of therapeutic strategies for cancer treatment.  相似文献   

18.
The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection.  相似文献   

19.
Li X  Yu J  Xu S  Wang N  Yang H  Yan Z  Cheng G  Liu G 《Glycoconjugate journal》2008,25(5):415-425
Paclitaxel (Taxol) conjugated to muramyl dipeptide (MDP) is described. Biological testing showed that the conjugation of MDP at 2'-O-paclitaxel (2'- O -MTC-01) not only has antitumor activity, but also have immunoenhancement capacity. Compared with paclitaxel or MDP alone or with a mixture of paclitaxel + MDP, 2'- O -MTC-01 significantly increases the production and expression of TNF-alpha and IL-12 from mouse peritoneal macrophages, which demonstrates a synergism of MDP and paclitaxel in one conjugated molecule.  相似文献   

20.
Epidemiological studies have suggested that the use of aspirin is associated with a decreased incidence of human malignancies, particularly colorectal cancer. Since reactive oxygen species (ROS) are critically involved in multistage carcinogenesis, this study was undertaken to examine the ability of aspirin to inhibit ROS-mediated DNA damage. Hydrogen peroxide (H2O2)+Cu(II) and hydroquinone (HQ) + Cu(II) were used to cause oxidative DNA strand breaks in phiX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.5-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a marked inhibition of oxidative DNA damage induced by either H2O2/Cu(II) or HQ/Cu(II). The inhibition of oxidative DNA damage by aspirin was exhibited in a concentration-dependent manner. Moreover, aspirin was found to be much more potent than the hydroxyl radical scavengers, mannitol and dimethyl sulfoxide, in protecting against the H2O2/Cu(II)-mediated DNA strand breaks. Since the reduction of Cu(II) to Cu(I) is crucially involved in both H2O2/Cu(II)- and HQ/Cu(II)-mediated formation of hydroxyl radical or its equivalent, and the subsequent oxidative DNA damage, we examined whether aspirin could inhibit this Cu(II)/Cu(I) redox cycle. It was observed that aspirin at concentrations that showed the inhibitory effect on oxidative DNA damage did not alter the Cu(II)/Cu(I) redox cycle in either H2O2/Cu(II) or HQ/Cu(II) system. In addition, aspirin was not found to significantly scavenge H2O2. This study demonstrates for the first time that aspirin potently inhibits both H2O2/Cu(II)- and HQ/Cu(II)-mediated oxidative DNA strand breaks most likely through scavenging the hydroxyl radical or its equivalent derived from these two systems. The potent inhibition of oxidative DNA damage by aspirin may thus partially contribute to its anticancer activities observed in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号