首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrates have drawn considerable interest from researchers recently due to their affinity for CO2. However, most of the research in this field has focused on peracetylated derivatives. Compared with acetylated carbohydrates, which have already been studied in depth, methyl d-glucopyranoside derivatives are more stable and could have additional applications. Thus, in the present work, ab initio calculations were performed to elucidate the characteristics of the interactions of methylglucoside derivatives with CO2, and to investigate how the binding energy (ΔE) is affected by isomerization or the introduction of various acyl groups. Four methyl d-glucopyranosides (each with two anomers) bearing acetyl, propionyl, butyryl, and isobutyryl moieties, respectively, were designed as substrates, and the 1:1 complexes of a CO2 molecule with each of these sugar substrates were modeled. The results indicate that ΔE is mainly influenced by interaction distance and the number of negatively charged donors or interacting pairs in the complex; the structure of the acyl group present in the substrate is a secondary influence. Except in the case of methyl 2-O-acetyl-d-glucopyranose, the ΔE values of the α- and β-anomers of each methylglucoside were found to be almost the same. Therefore, we would expect the CO2 affinities of the four derivatives studied here to be as strong as or even stronger than that of peracetylated d-glucopyranose.
Graphical Abstract The binding energy between methyl d-glucopyranoside derivatives with various substituted acyl groups and CO2 are evaluated by ab initio calculations. The strong interaction between these methyl dglucopyranoside derivatives and CO2 showed the potential of their application for CO2 capture
  相似文献   

2.
To improve the practicality and safety of a novel explosive dihydroxylamm onium 5,5′-bis (tetrazole)-1,1′-diolate (TKX-50), polyvinylidene difluoride (PVDF) and polychlorotrifluoroe-thylene (PCTFE) were respectively added to the TKX-50, forming the polymer-bonded explosives (PBX). Interfacial and mechanical properties of PBX were investigated through molecular dynamics (MD) method, desensitizing mechanisms of fluorine-polymers for TKX-50 were researched by compression and bulk shear simulations. Results show that the binding energies (E bind ) between polymers (PVDF or PCTFE) and TKX-50 surfaces all rank in order of (011)?>?(100)?>?(010), shorter interatomic distance and the resulted higher potentials lead to higher E bind on TKX-50/PVDF interfaces than that on PCTFE/TKX-50 interfaces. Compared with TKX-50, the ductility of PBX is improved due to the isotropic mechanical property and flexibility of fluorine-polymers especially the PCTFE. Desensitizing effect of fluorine-polymers for TKX-50 is found under loading condition, which is attributed to the enhanced compressibility and buffer capacity against external pressure in compression, as well as the improved lubricity to reduce the sliding potentials in bulk shear process.
Graphical Abstract Comparisons of the internal stress and slide potentials of the novel explosive,TKX-50 and its based PBX. Desensitizing effects can be found by the adding of fluorine-polymers, it owes to their better flexibility and lubricity as well as the amorphous nature.
  相似文献   

3.
Learning the micro-mechanisms of fluorinated polymers during mechanical response is more difficult than that of common polymers due to the unique intrinsic characteristics of the fluorine element. In this paper, we applied molecular dynamics simulations to study deformation mechanisms of poly(vinylidine fluoride-co-chlorotrifluoroethylene) during uniaxial tension. We analyzed the variations of individual energy components and structural distribution curves versus strain in addition to the commonly used stress-strain curves and microstructure evolutions during stretching. The elastic limit is ??=?0.02, ??=?0.06 is the yield point, ??=?0.24 is the termination of the softening, necking occurs at 0.24?<???<?0.5, strain hardening occurs at 0.5?<???<?2.6, and ??=?2.6 is the damage or brake point. The elastic behavior of the material does not rely on strain rate, the obvious effect of strain rate can be seen at the yield region and strain softening region, and the stress values are not influenced by strain rates at the softening and hardening stages. Overall, total potential energy is mainly correlated with non-bonded energy, and the proportion of ΔEcoul overwhelms all the others. The energy components are ordered: ΔEcoul?>?ΔEvdwl >?>?ΔEangle?>?ΔEdihed?>?ΔEbond. The chain conformation at yield point is almost unchanged compared with the pre-stretching conformation. The chain conformations at the end of strain softening changes more obviously than that at yield point. The molecular chains maintain random coil structure before strain hardening, and switch into a stretch chain conformation gradually during strain hardening. The maximum change in bond angle during the stretching process is F-C-H, the largest change in bond length is the C-Cl bond, and the largest change in dihedral angle is H-C-C-H. The change of non-bonded interaction in the poly(VDF-co-CTFE) system is much larger than the bonding interaction, and the main factor affecting bonding interaction is the change of angles.
Graphical abstract Poly(vinylidine fluoride-co-chlorotrifluoroethylene) during tension?
  相似文献   

4.
To explore the adsorption mechanism of NO, NH3, N2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N2 physisorption, and N2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface.
Graphical abstract NH3, N2, NO adsortion on carbon surface
  相似文献   

5.
6.
Ensemble-based virtual screening using different conformations of a target protein is gaining popularity, as it can leverage information from target flexibility for effective lead identification. In this paper, molecular dynamics simulation followed by RMSD-based clustering was employed to generate and choose distinct conformations of Bcr-Abl. Three representative structures from the most-populated clusters along with the crystal structure conformation (PDBID: 3K5V) were used to perform docking-based virtual screening of 14,400 compounds (in the Maybridge database) in order to identify potential allosteric site binders. Seven compounds found as hits in at least three of the four virtual screenings had higher Glide docking scores than the co-crystallized allosteric inhibitor GNF-2. Detailed computational analyses of the seven hits identified SEW02675 (ΔG bind = ?164.92 kJ/mol with the wild-type (wt) Bcr-Abl and ?167.37 kJ/mol with the T334I Bcr-Abl mutant) as a better allosteric site binder with both the wt and the mutant Bcr-Abl protein than the reference allosteric inhibitor GNF-2 (ΔG bind = ?103.12 with wt and ?142.96 kJ/mol with T334I). Moreover, the presence of SEW02675 in the allosteric site enhanced the binding of imatinib (ΔG bind = ?367.58 with wt and ?294.56 kJ/mol with T334I) to the ATP sites of the wt and the mutant Bcr-Abl. However, when GNF-2 was present in the allosteric site, the binding of imatinib (ΔG bind = ?351.76 with wt and ?273.94 kJ/mol with T334I) to the ATP site was weaker. The in silico findings suggest that SEW02675 could be used in combination with imatinib to treat chronic myeloid leukemia, and that it could help to overcome resistance due to T334I Bcr-Abl mutation.
Graphical abstract Virtual screening strategy to identify allosteric inhbitors of Bcr-Abl for the treatment of Chronic myeloid leukemia.
  相似文献   

7.
Ecdysone receptor (EcR) is a significant target in the identification of new environmentally friendly pesticides. There are two types of ecdysone agonists: steroidal ecdysone agonists and dibenzoylhydrazines (DBHs). In this study, various modeling methods (homology modeling, molecular docking, MD simulation, binding free energy calculation, and per-residue binding free energy decomposition) were utilized to study the different binding mechanisms of two types of ecdysone agonists. Our theoretical results indicated that the relative binding potencies of DBHs can be ranked sufficiently accurately using the MOE docking method. However, MM/PBSA calculations more accurately predicted the binding affinities between steroidal ecdysone agonists and EcR-LBD. To identify the key residues involved in ecdysone agonist binding, the binding free energy (ΔG Bind) was decomposed into the energy contributions of individual residues. The results revealed that nine residues—Ile339, Thr343, Met380, Met381, Tyr403, Tyr408, Asp419, Gln503, and Asn504—determined the binding affinities of the DBHs. Glu309, Met342, Arg383, Arg387, and Leu396 were important influences on the binding affinities of the steroidal ecdysone agonists.
Graphical abstract The ecdysone receptor (EcR) is related to insect growth and has been shown to be a useful target for insecticides
  相似文献   

8.
Mechanisms for the activation of water, ammonia, and other small molecules by the PCcarbeneP nickel pincer complex were studied computationally with the aid of density functional theory. The calculation results indicate that the strongly donating, nucleophilic carbene center can engage in a variety of heterolytic splitting of E?H (E=H, C, N, O) bonds, some of which are reversible. The cleavage of E?H bonds across the Ni=C bond represents a new mode of bond activation by ligand cooperativity in nickel pincer complex. On the basis of the calculations, we also demonstrate that reversible H2 activation across the Ir=C bond via the PCcarbeneP iridium pincer complex was observed in the experiments, while other E?H (E=C, N, O) bonds were not activated. Our calculations are in good agreement with experimental observations and could provide new insights into ligand cooperativity in nickel pincer complexes.
Graphical Abstract Synopsis TOC
  相似文献   

9.
The ternary complexes ML???PyZX2???NH3 (ML?=?CuCl, CuCN, AgCN, and AuCN; Z?=?P, As, and Sb; X?=?H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML???PySbH2???NH3, ML???PyAsF2???NH3, and ML???PySbF2???NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.
Graphical Abstract The pnicogen bond is strengthened by the coordinaiton bond
  相似文献   

10.
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors.
Graphical abstract Bennett’s acceptance ratio (BAR) method
  相似文献   

11.
High-level ab initio calculations on the complexes between noble gas atoms (He, Ne, Ar, Kr, and Xe) and dihalogen molecules (F2, Cl2, Br2, and I2) reveal trends, both in interaction energies and the energy difference between the linear and T-shaped structures, that can be explained well in terms of dispersion interactions enhanced by polar flattening of the halogens. The partial discrepancies with experimental findings are discussed.
Graphical abstract The molecular electrostatic potential (red positive, blue negative) of Cl2...Br2 projected onto the 0.003 a.u. isodensity surface.
  相似文献   

12.
Phospholipase A2 (PLA2) is one of the key enzymes involved in the formation of inflammatory mediators. Inhibition of PLA2 is considered to be one of the efficient methods to control inflammation. In silico docking studies of 160 selected indole derivatives performed against porcine pancreatic PLA2 (ppsPLA2) suggested that, CID2324681, CID8617 (indolebutyric acid or IBA), CID22097771 and CID802 (indoleacetic acid or IAA) exhibited highest binding energies. In silico analysis was carried out to predict some of the ADME properties. The binding potential of these compounds with human non pancreatic secretory PLA2 (hnpsPLA2) was determined using molecular docking studies. In order to corroborate the in silico results, enzyme kinetics and isothermal titration calorimetric analysis of the two selected compounds, IAA and IBA were performed against ppsPLA2. From the analysis, it was concluded that IAA and IBA can act as competitive inhibitors to the enzyme and may be used as anti inflammatory agents.
Figure Inhibitory activity of IAA and IBA against PLA2
  相似文献   

13.
Odorant binding proteins (OBPs) are important in insect olfactory recognition. These proteins bind specifically to insect semiochemicals and induce their seeking, mating, and alarm behaviors. Molecular docking and molecular dynamics simulations were performed to provide computational insight into the interaction mode between AgamOBP7 and novel (E)-β-farnesene (EBF) analogues with an aromatic ring. The ligand-binding cavity in OBP7 was found to be mostly hydrophobic due to the presence of several nonpolar residues. The interactions between the EBF analogues and the hydrophobic residues in the binding cavity increased in strength as the distance between them decreased. The EBF analogues with an N-methyl formamide or ester linkage had higher docking scores than those with an amide linkage. Moreover, delocalized π–π and electrostatic interactions were found to contribute significantly to the binding between the ligand benzene ring and nearby protein residues. To design new compounds with higher activity, four EBF analogues D1–D4 with a benzene ring were synthesized and evaluated based on their docking scores and binding affinities. D2, which had an N-methyl formamide group linkage, exhibited stronger binding than D1, which had an amide linkage. D4 exhibited particularly strong binding due to multiple hydrophobic interactions with the protein. This study provides crucial foundations for designing novel EBF analogues based on the OBP structure.
Graphical abstract The design strategy of new EBF analogues based on the OBP7 structure
  相似文献   

14.
An experimentally determined structure for human CYP2J2—a member of the cytochrome P450 family with significant and diverse roles across a number of tissues—does not yet exist. Our understanding of how CYP2J2 accommodates its cognate substrates and how it might be inhibited by other ligands thus relies on our ability to computationally predict such interactions using modelling techniques. In this study we present a computational investigation of the binding of arachidonic acid (AA) to CYP2J2 using homology modelling, induced fit docking (IFD) and molecular dynamics (MD) simulations. Our study reveals a catalytically competent binding mode for AA that is distinct from a recently published study that followed a different computational pipeline. Our proposed binding mode for AA is supported by crystal structures of complexes of related enzymes to inhibitors, and evolutionary conservation of a residue whose role appears essential for placing AA in the right site for catalysis.
Graphical Abstract Arachidonic acid docked in the active site of CYP2J2 assumes a catalytically competent binding mode stabilised by hydrogen bonds to Arg117
  相似文献   

15.
The efficient transport of a drug molecule until its target cell constitutes a significant challenge for delivery processes. To achieve such objectives, solid nanocapsules that protect the immune system during the transport should be developed and controlled at the nanoscale level. From this point of view, nanostructures based on graphene sheets could present some promising properties due to their ultimate size and dimension. In this work, we present theoretical results using DFT calculations, dealing with a graphene-based delivery system. Indeed, we demonstrate the stability of the gemcitabine anticancer molecule when it is encapsulated into two concave graphene sheets organized as a nest. Quantum calculations showed that the most stable state is located inside the nest, which is then formed by two layers distanced 6 Å from each other. For all the optimized systems, we focused on the dependence of the interaction energy on the molecule displacements during its entrance in the graphene nest and its exit from it. We also analyzed their consequence on the local morphological and electronic charge properties.
Graphical Abstract Adsorption energy (in eV) of gemcitabine drug during its encapsulation inside the nest of grapheneand its release from it
  相似文献   

16.
The number of hydrogen bonds and detailed information on the interlayer spacing of graphene oxide (GO) confined water molecules were calculated through experiments and molecular dynamics simulations. Experiments play a crucial role in the modeling strategy and verification of the simulation results. The binding of GO and water molecules is essentially controlled by hydrogen bond networks involving functional groups and water molecules confined in the GO layers. With the increase in the water content, the clusters of water molecules are more evident. The water molecules bounding to GO layers are transformed to a free state, making the removal of water molecules from the system difficult at low water contents. The diffuse behaviors of the water molecules are more evident at high water contents. With an increase in the water content, the functional groups are surrounded by fewer water molecules, and the distance between the functional groups and water molecules increases. As a result, the water molecules adsorbed into the GO interlamination will enlarge the interlayer spacing. The interlayer spacing is also affected by the number of GO layers. These results were confirmed by the calculations of number of hydrogen bonds, water state, mean square displacement, radial distribution function, and interlayer spacing of hydrated GO.
Graphical Abstract This work research the interaction between GO functional groups and confined water molecules. The state of water molecules and interlayer spacing of graphene oxide were proved to be related to the number of hydrogen bonds.
  相似文献   

17.
A topological analysis based on density functional electronic and spin densities of the bonding characteristics in a series of Fe, Ru, Os, Tc and Rh dimers and trimers bridged, respectively, by μ-1,8-naphthyridine (nap) and μ-2,2′-dipyridylamine (dpa) is presented. By this simple qualitative analysis, we were able to determine the electronic ground state and correlated bonding order for a number of complexes potentially involved in extended metal atom chains (EMAC). Furthermore, we showed in the Ru dimer that it was possible to control the spin state simply by changing the bonded counter-anion.
Graphical Abstract Electron localization analysis of the bonding properties in [M2(nap)4Cl2]2+ and [M3(dpa)4(Cl2] complexes
  相似文献   

18.
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C4mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C4mim]TFA is a better extractant for thiophene sulfone (THO2) than for TH. Two pathways were proposed for the oxidation of TH to THO2 with [C4mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C4mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H2O2 as an oxidant.
Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFA?
  相似文献   

19.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
Graphical abstract The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated
  相似文献   

20.
DSS1 is a small acidic intrinsically disordered protein (IDP) that can fold upon binding with PCID2 TREX-2. The resulting complex plays a key role in mRNA export. However, the binding mechanism between DSS1 and PCID2 is unsolved. Here, three independent 500-ns molecular dynamics (MD) simulations were performed to study the DSS1–PCID2 binding mechanism by comparing apo-PCID2 and bound PCID2. The results show that the conformational variation of bound PCID2 is smaller than that of apo-PCID2, especially in the binding domain of two helices (helix IV and VIII). The probability of coil formation between helix III and helix IV of bound PCID2 increases, and a short anti-parallel β-sheet forms upon DSS1 binding. The decomposition of binding free energy into protein and residue pairs suggests that electrostatic and hydrophobic interactions play key roles in the recognition between DSS1 and PCID2. There is a hydrophobic core of seven residues in DSS1 favorable to the binding of PCID2. These analytical methods can be used to reveal the recognition mechanisms of other IDPs and their partners.
Figure Differences of second structure of PCID2 in bound and unbound states. The interaction surface between the helix VIII of PCID2 and helix of DSS1
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号