首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
1. This study investigates when and where density dependence operates on the mortality rates of stream‐resident brown trout Salmo trutta. To this aim, I explored populations in habitats of different quality containing high, low or intermediate densities over broad scales of space and time. The study is based on census data of 170 cohorts quantified from recruitment to the total disappearance at 12 sites in four contrasting tributaries of the Rio Esva drainage (north‐western Spain), over the years 1986–2007. 2. Log10‐transformed survivor density over time highlighted a consistent pattern for the 170 cohorts characterised by the occurrence of only two life stages. An early stage starts at recruitment, lasts about half the lifetime and shows no or negligible mortality. A threshold time at 425–620 days after emergence preceded a second stage of continuous and constant mortality until the final disappearance of the cohorts. Consequently, in all scenarios, mortality only occurred in the adult component and no effect of season, year, age‐class and/or reproductive stage was detected. 3. Substantial spatial and temporal variations typified both recruitment (range R = 0.01–1.62 ind m?2) and adults’ mortality rates (range Z = 0.03–0.38 day?1). Nested anova s revealed strong effects of site and year on both recruitment and mortality with sites interspersed along the stream gradients where recruitment and mortality were typically high relative to other sites located either nearby in the same stream or distant in another stream, where both recruitment and mortality rates were typically low or intermediate. 4. Adult mortality rates plotted against recruitment for the 170 cohorts pooled revealed a continuous, positive power relationship that explained 45.3% of variation in mortality rates over the whole range of recruitment values. Similarly, highly significant power relationships were elucidated for site‐specific mortality rates averaged across years and for annual‐specific mortality rates averaged across sites against the corresponding mean recruitment averaged across years and sites, respectively. These relationships support the hypothesis that the operation of density dependence is scale independent and context independent but operates in a continuous manner across all scenarios examined. 5. A chronic effect of density dependence on adult losses induces temporally persistent populations maintained by a low number of spawners. Apparently, the operation of density dependence adjusts the number of spawners to the availability of rearing and spawning habitat. This dynamic process may also help to explain the small effective population size (Ne) recently documented by genetic studies of stream‐living brown trout and other salmonids.  相似文献   

2.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

3.
1. Rivers in boreal forested areas were often dredged to facilitate the transport of timber resulting in channels with simplified bed structure and flow fields and reduced habitat suitability for stream organisms, especially lotic fishes. Currently, many streams are being restored to improve their physical habitat, by replacing boulders and gravel and removing constraining embankments. The most compelling justification behind stream restoration of former floatways has been the enhancement of native fish populations, specifically salmonids. 2. We examined the success of a stream management programme aimed at re‐building diminished brown trout (Salmo trutta) populations by monitoring densities of young‐of‐year and older trout in 18 managed and three reference streams during 2000–2005. Rehabilitation included in‐stream restoration combined with a 5‐year post‐restoration period of stocking young brown trout. Our space‐for‐time substitution design comprised four pre‐management, four under‐management, 10 post‐management and three reference streams. 3. Densities of young‐of‐year brown trout, indicating population establishment, were significantly higher in post‐ compared with pre‐management streams. However, density of young‐of‐year brown trout in post‐management streams was significantly lower compared with near‐pristine reference streams. Furthermore, success of managed brown trout population re‐building varied, indicating stream‐specific responses to management measures. Density of burbot (Lota lota), a native generalist predator, was associated with low recruitment of brown trout. 4. Stream‐specific responses imply that rehabilitation of brown trout populations cannot be precisely predicted thereby limiting application. Our findings support the importance of adaptive stream restoration and management, with focus on identifying factor(s) limiting the establishment of target fish populations.  相似文献   

4.
Two cohorts of Atlantic salmon parr and one of brown trout were studied in periods with and without the presence of mink, Mustela vison . In all localities a marked increase in mortality rate was observed during periods when mink were present. Mink were observed catching salmon parr, and approximately 10% of the parr had bite marks, especially on the tail fins. In the smallest stream with brown trout, the mortality rate was 0.80 during a few days with mink present; remnants of trout were found along the stream. The present study suggests that mink predation may be a major cause of mortality of salmonids in small streams. The results indicate that predation efficiency may vary with characteristics of the habitat, especially stream width and discharge, and fish density.  相似文献   

5.
Invasions occurring in natural environments provide the opportunity to study how vital rates change and life histories evolve in the presence of a competing species. In this work, we estimate differences in reproductive traits, individual growth trajectories, survival, life histories and population dynamics between a native species living in allopatry and in sympatry with an invasive species of the same taxonomic Family. We used as a model system marble trout Salmo marmoratus (native species) and rainbow trout Oncorhynchus mykiss (non-native) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream into two sectors only a few 100 meters apart: a downstream sector in which marble trout live in sympatry with rainbow trout and an upstream sector in which marble trout live in allopatry. We used an overarching modelling approach that uses tag-recapture and genetic data (>2,500 unique marble and rainbow trout were sampled and genotyped) to reconstruct pedigrees, test for synchrony of population dynamics and model survival and growth, while accounting for individual heterogeneity. The population dynamics of the two marble trout populations and of rainbow trout were synchronous. We found higher prevalence of younger parents, higher mortality and lower population density in marble trout living in sympatry with rainbow trout than in marble trout living in allopatry. There were no differences in the average individual growth trajectories between the two marble trout populations. Faster life histories of marble trout living in sympatry with rainbow trout are consistent with predictions of life history theory.  相似文献   

6.
1. Microsatellite and isozyme loci variation were used to study structure and dynamics of a brown trout (Salmo trutta) population heavily affected by damming. The downstream area accessible for spawning was drastically reduced to a stream 1 km long influenced by regulated discharge. 2. Stocking of hatchery‐reared juveniles failed and the population is entirely supported by anadromous adults from neighbouring populations. 3. Temporal genetic stability is reported here. Some punctual between‐river genetic differences are likely because of different contribution from each neighbouring river through years. 4. High anadromy‐mediated gene flow produces a lack of genetic substructure in the region. The role of anadromous brown trout on maintenance of endangered small populations is emphasised.  相似文献   

7.
Carlsson J  Nilsson J 《Hereditas》2000,132(3):173-181
Brown trout (Salmo trutta L.) population genetic structure and its temporal stability were studied within a small forest stream in central Sweden using five microsatellite loci. Both resident and migrating brown trout are present in the watershed. Tissue samples were collected from seven sections of the stream during two consecutive years. No differences were found in multilocus FST estimates between years within sections except in one case. Moreover, differences between age cohorts within sample sections were rare. The low interannual variation and the low heterogeny between cohorts is interpreted as indications of temporal stability. Pairwise multilocus FST estimates increased with increasing geographic distance, indicating isolation by distance. It is argued that the brown trout of the F?rs?n stream represent a population complex. The structure is probably maintained by precise natal homing and a limited, but important, amount of gene flow between closely situated sections within the stream supporting a stepping-stone model of gene flow.  相似文献   

8.
Within-stream variation in early life-history traits in brown trout   总被引:3,自引:0,他引:3  
Significant additive genetic variance for most early life-history traits was found in brown trout Salmo trutta living in both allopatry above an impassable waterfall and sympatry (below the waterfall in the same stream) with alpine bullhead Cottus poecilopus. These traits included length, mass and yolk sac volume at hatching, and size at'button-up' (the time when yolk is enclosed within the body cavity). There were small differences in size at hatching and size at button-up among populations (adjusted for egg size). However, sympatric fry grew more rapidly and experienced lower mortality rates during the period of first feeding than allopatric fry. This might indicate behavioural differences between brown trout from the two populations. It is suggested that these phenotypic differences may be a result of adaptation to living in sympatry with alpine bullhead.  相似文献   

9.
Assortative mating is thought to play a key role in reproductive isolation. However, most experimental studies of assortative mating do not take place in multiple natural environments, and hence, they ignore its potential context dependence. We implemented an experiment in which two populations of brown trout (Salmo trutta) with different natural flow regimes were placed into semi‐natural stream channels under two different artificial flow regimes. Natural reproduction was allowed, and reproductive isolation was measured by means of parentage assignment to compare within‐population vs. between‐population male–female mating and relative offspring production. For both metrics, reproductive isolation was highly context dependent: no isolation was evident under one flow regime, but strong isolation was evident under the other flow regime. These patterns were fully driven by variance in the mating success of males from one of the two populations. Our results highlight how reproductive isolation through assortative mating can be strongly context dependent, which could have dramatic consequences for patterns of gene flow and speciation under environmental change.  相似文献   

10.
In a study of the genetic relationships among 879 anadromous brown trout Salmo trutta from 13 streams at the Island of Gotland, Sweden, using RFLP analysis of a mitochondrial DNA segment (NADH dehydrogenase-1 gene), six haplotypes were detected. Significant genetic divergence was observed among streams as well as between cohorts within streams. Approximately 8–9% of the total variation was due to differences between populations, and 4–5% was explained by differences between cohorts within populations. The female effective population size ( N ef) was assessed from temporal haplotype frequency differences between consecutive cohorts; the estimated average N ef over all populations was just below 30, suggesting that these populations were effectively quite small. With such small effective sizes the populations are expected to loose genetic variability quickly, but the observed levels do not appear particularly low. This indicates that female migration between streams occurs. The observed level of differentiation does not support the presumption that a particular pre-smolt migratory behaviour observed in Gotland streams, with large portions of fry leaving for the sea soon after hatching, results in a reduced homing ability. From a conservation management perspective the Gotland brown trout streams should be regarded as a population system where the vitality and survival of brown trout in one stream is dependent on the opportunity of contact and exchange of individuals from other streams.  相似文献   

11.
12.
1. The relative importance of density‐dependent and density‐independent processes in explaining fluctuations in natural populations has been widely debated. In particular, the importance of larval supply and whether it may control the type of regulatory processes a population experiences has proved contentious. 2. Using surveys and field experiments conducted in streams in Canterbury, New Zealand, we investigated how variation in the survival of non‐migratory Galaxias vulgaris fry was affected by density‐dependent and density‐independent processes and how this variation influenced recruitment dynamics. 3. Fry populations with high settlement densities experienced a 70–80% reduction in population size from density‐related mortality during the first fourteen days after peak settlement but thereafter the influence of density‐dependent processes on fry was weak. The impact of environmental conditions on fry populations was dependent on fry size and the magnitude of the perturbation, such that flooding effects on fry survival were most severe when fry were small. 4. In streams not affected by flooding, the size and density of introduced trout (Salmo trutta and Oncorhynchus mykiss) were the most significant factors determining the abundance of eventual recruits. A field experiment manipulating brown trout access to fry populations revealed that trout as small as 110 mm may be capable of greatly reducing and possibly preventing galaxiid recruitment. 5. Overall, the results indicated density‐dependent population regulation was only possible at sites with high native fish densities because trout were likely to be suppressing the number of potential recruits at sites with low native fish numbers. Whilst density‐dependent processes had a strong effect on fry survival following the period of peak fry abundance, density‐independent processes associated with flow and predatory trout influences on fry survival largely determined recruitment variability among galaxiid populations. Focusing conservation efforts on improving habitat to increase fry retention and reducing the impacts of trout on galaxiids would ensure more native fish populations reached their potential abundance.  相似文献   

13.
1. Changes in riparian vegetation owing to forest harvesting may affect the input of large wood, a major structural element, to streams. Studies of large wood impacts on stream fish have focused on population‐level responses, whereas little attention has been given to how wood affects fish behaviour. 2. In a laboratory stream experiment, we tested how two size classes of brown trout, Salmo trutta, (mean size of 85 and 125 mm), alone and together, responded to a gradient of large wood in terms of activity, foraging on terrestrial drift and interactions between conspecifics. 3. The results showed that the presence of large wood significantly reduced the overall activity of the fish, the number of agonistic interactions between individuals and the proportion of captured prey. However, activity decreased relatively more than the proportion of captured prey, resulting in a significant positive net effect of wood on the number of prey captures per time spent active (PTA). This indicates that trout living in habitats with high wood density may have a higher net energy gain than trout living in habitats with less wood. 4. There were no observable size‐class differences in the benefits of large wood or in the utilisation of surface‐drifting terrestrial prey. 5. These results suggest that the presence of large wood may be an important factor shaping stream communities and that a lack of structural complexity may decrease energy gain, increase agonistic interactions and, consequently, lower the production of brown trout.  相似文献   

14.
1. The ontogenetic development of anadromous salmonids includes downstream emigration of immature individuals from freshwater towards the marine environment. Although this migration of juvenile salmonids (smolts) may be associated with severe mortalities, only limited attention has been paid to the spatial positioning of smolts in small streams. 2. Using a novel approach, this study examined the vertical and horizontal positioning of brown trout and Atlantic salmon smolts while performing downstream migration in a small lowland stream. 3. Pre‐smolts of indigenous and hatchery‐reared (F1) brown trout (Salmo trutta), and two different populations of Atlantic salmon (S. salar), were tagged with passive integrated transponder (PIT) tags and subsequently released upstream of an antenna array consisting of five circular swim‐through PIT antennas. Antennas were positioned in order to determine whether the migrating smolts were bottom or surface oriented, and if they were oriented towards the mid‐channel or the stream bank. 4. During the smolt emigration period, data describing both the detection of the migrating fish and the amount of water passing through the antennas were collected. This was accomplished in order to determine if the fish were performing active positioning behaviour independently of the vertical and horizontal discharge distributions in the stream. 5. The results showed that the smolts migrated in a non‐random spatial pattern independently of the stream discharge distributions. Vertically, the indigenous brown trout and the Atlantic salmon demonstrated a preference for the bottom orientated positions. In contrast, the distribution of the F1 brown trout was not different from the discharge distribution. The latter observation suggests random vertical positioning, which may be indicative of inferior migratory performance. Horizontally, all tested smolt populations strongly preferred the mid‐channel positions. 6. The discharge‐corrected preferences for certain spatial positions suggest that smolt emigration is not entirely a matter of passive displacement in lowland streams. 7. Anthropogenically altered channels may inhibit or delay downstream emigration of smolts resulting in increased mortalities. Given that the smolts in this study actively selected spatial positions in the mid‐channel and near the bottom, it is suggested that deep, mid‐channel furrows may be used to help guide migrating smolts past adverse habitats in lowland streams.  相似文献   

15.
We examined seasonal changes in population densities of stream salmonids (masu salmon Oncorhynchus masou, white-spotted charr Salvelinus leucomaenis, and rainbow trout O. mykiss) in two tributaries of the Shoro River, eastern Hokkaido, Japan. In one small tributary, water temperature was relatively high during the winter, and populations of salmon and trout increased through immigration at this time of the year, becoming dominant components of the salmonid assemblage; the density of charr in this stream decreased during the winter, but charr was dominant during the summer. In another medium-sized tributary, the water temperature fell to close to 0°C during the winter, and densities of salmon and charr decreased in this season, through emigration; trout were very rare in this stream. Seasonal patterns of stream salmonid densities vary among species and between localities, resulting in seasonal changes in species composition. For a comprehensive understanding of population processes, a whole-river survey across seasons will be necessary.  相似文献   

16.
Current climate change exacerbates the environmental restrictions on temperate species inhabiting low latitude edges of their geographical ranges. We examined how temperature variations due to current and future climate change are likely to affect populations’ persistence of stream‐dwelling brown trout Salmo trutta at the vulnerable southern periphery of its range. Analysis of 33 years of air temperature data (1975–2007) by time‐series models indicated a significant upward trend and a pronounced shift in air temperature around 1986‐1987. This warming is associated with an ongoing population decline of brown trout, most likely caused by a loss of suitable thermal habitat in lower latitudes since the 1980s. Population decrease may not be attributed to physical habitat modification or angler pressure, as carrying capacity remained stable and populations were not overexploited. We developed regional temperature models, which predicted that unsuitable thermal habitat for brown trout increased by 93% when comparing climate conditions between 1975–1986 and 1993–2004. Predictions from climate envelope models showed that current climate change may be rendering unsuitable 12% of suitable thermal habitat each decade, resulting in an overall population decrease in the lower reaches of around 6% per year. Furthermore, brown trout catches markedly decreased 20% per year. Projections of thermal habitat loss under the ecologically friendly B2 SRES scenario showed that brown trout may lose half of their current suitable habitat within the study area by 2040 and become almost extinct by 2100. In parallel to the upstream movement of brown trout thermal habitat, warm water species are increasing their relative abundance in salmonid waters. Empirical evidence was provided of how current climate change threatens some of the most healthy native brown trout populations in Southern Europe and how forthcoming climate change is expected to further decrease the conservation status of the species.  相似文献   

17.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

18.
The influence of pulsed discharges associated with hydroelectric power generation (i.e. hydropeaking) on feeding activity and diet composition of adult brown trout (Salmo trutta) was studied during the summer by comparing two sites: upstream (control site) and downstream from a power plant (hydropeaking site). Twenty fish were captured from each study site by electrofishing at 4‐hour intervals for two consecutive days and stomach contents were collected with pulsed gastric lavage. Hydropeaking events affected brown trout feeding behaviour as well as prey availability. Feeding intensity, measured by the stomach Fullness Index, showed pronounced variations with maximum values after flow pulses, which were linked to variations in prey availability because of increased drift rates of invertebrates. In contrast, brown trout living at the control site showed smoother variations in feeding activity not linked to invertebrate drift. Overall, brown trout at the hydropeaking site had higher food consumption rates and a more generalist and heterogeneous diet than trout from the control site, indicating an opportunistic feeding behaviour during flow pulses. Therefore, the hydrological disturbance caused by hydropeaking did not appear to cause direct negative impacts on feeding of adult brown trout. However, reduced trout density and imbalanced size structure in the hydropeaking site were detected, requiring further research to clarify the spatial influence of hydropeaking on other factors that could negatively affect brown trout populations.  相似文献   

19.
Synchrony among populations (i.e. spatial covariation in temporal fluctuations of population size or growth rate) is a common feature to many animals. Both large-scale autocorrelated climatic factors (the 'Moran effect') and dispersal between populations are candidates to explain synchrony, although their relative influence is difficult to assess. Only a few investigations have reported patterns of synchrony among freshwater populations, and even fewer directly related these patterns to an environmental variable. In the present study, we analysed the spatio-temporal patterns of fluctuation of 57 brown trout populations widespread across France, each sampled continuously during 5 years. We compared the respective influence of connectivity and stream distance within basins (i.e. that potentially allow a basin-scale dispersal) and environmental factors (hydrological and air temperature variables, available for 37 sites) on the synchrony of brown trout cohort densities (0+, 1+ and adults). A series of Mantel tests revealed that the degree of synchrony was not related to connectivity or stream distance between sites, suggesting no effect of dispersal at the basin-scale. The degree of synchrony among sites for the 0+ fish was significantly related to the degree of hydrological synchrony (based on high flows during the emergence period). For all three age classes, the synchrony in the temperature patterns did not explain synchrony in trout dynamics. Our results allow us to discuss the respective influence of dispersal and climatic factors on the spatio-temporal patterns of trout dynamics at the basin scale.  相似文献   

20.
Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host‐parasite dynamics during the ice‐covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod‐transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号