首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Our knowledge of the diversity of potato cyst nematodes in their native areas still remains patchy and should be improved. A previous study based on 42 Peruvian Globodera pallida populations revealed a clear south to north phylogeographic pattern, with five well‐supported clades and maximum diversity observed in the south of Peru. In order to investigate this phylogeographic pattern more closely, we genotyped a larger collection of Peruvian populations using both cathepsin L gene sequence data and a new set of 13 microsatellite loci. Using different genetic analyses (STRUCTURE, DAPC), we consistently obtained the same results that led to similar conclusions: the presence of a larger genetic diversity than previously known suggesting the presence of cryptic species in the south of Peru. These investigations also allowed us to clarify the geographic borders of the previously described G. pallida genetic clades and to update our knowledge of the genetic structure of this species in its native area, with the presence of additional clades. A distance‐based redundancy analysis (dbRDA) was also carried to understand whether there was a correlation between the population genetic differentiation and environmental conditions. This analysis showed that genetic distances observed between G. pallida populations are explained firstly by geographic distances, but also by climatic and soil conditions. This work could lead to a revision of the taxonomy that may have strong implications for risk assessment and management, especially on a quarantine species.  相似文献   

2.
Polyploidy, hybridization and variation in mating systems are central issues for a deeper understanding of animal evolution. The Iberian species Squalius alburnoides represents an example combining all three phenomena. Previous studies showed that S. alburnoides populations are mainly composed of triploid and diploid hybrid forms (mainly females), and that the tetraploid forms are rare or absent. Both populations from the Douro drainage reveal a distinct scenario: tetraploid individuals represent 85.6-97.5% of the population, with no sex ratio bias observed. Based on the flow cytometry measurements of blood and spermatozoa cells, microsatellite loci and experimental crosses, we describe here, for the first time, two symmetric allotetraploid populations (CCAA) that resumed normal meiosis after undergoing intermediate processes of non-sexual reproduction to give rise to a new sexually reproducing polyploid species. Prezygotic (habitat selection and assortative mating) and postzygotic mechanisms (nonviable embryos) are responsible for the reproductive isolation from other forms of the S. alburnoides complex (e.g. CA, CAA). This example illustrates how hybrid polyploid complexes may lead to speciation.  相似文献   

3.
    
To assess whether the species distinctions of Lake Tana's Labeobarbus spp. are supported by genetic information, microsatellite markers were used. A total of 376 Labeobarbus spp., belonging to 24 populations of 11 species from three regions of the lake (north, south and east), were sampled. Eight microsatellite markers were analysed. In general, differences between conspecific populations were smaller than differences between populations of different species. For six species, conspecific populations from different regions in the lake were consistently more similar than populations of other species from the same region. For four species this was not the case, while for one species two populations were similar, but different from the third population. River‐spawning species appeared to be more distinct than presumed lake spawners. On the species level, there was a significant correlation between genetic and morphological differentiation, especially in morphological aspects associated with ecological functioning. This suggests that genetic differentiation arose together with adaptive radiation, although the overall genetic differentiation among the Lake Tana Labeobarbus spp. is small.  相似文献   

4.
Lake Victoria is famous for its in evolutionary terms young but species‐rich assemblage of cichlid fishes. This ‘superflock’ also includes additional species from adjacent water systems. Lake Victoria is surrounded by several smaller lakes that are connected to the main water body of Lake Victoria only through swampy areas. Lake Kanyaboli is one such lake, harbouring a much poorer species diversity, mostly comprised of Lake Victoria endemics, some of which are now considered extirpated from the main lake. The focus of this study was on the modern haplochromine component of the cichlid fauna, represented by Lipochromis maxillaris, Astatotilapia nubila, Xystichromis phytophagus and Astatotilapia sp. ‘Bigeye’, as well as a number of morphologically distinct haplochromine specimens that could not be assigned to any of the recognized species. We used five microsatellite markers to distinguish these five taxa. Genetically, L. maxillaris was clearly differentiated from all other taxa, and A. sp. ‘Bigeye’ was moderately differentiated from the remaining three. Astatotilapia nubila, X. phytophagus and the unidentified specimens constituted a partially overlapping cluster. As each of the clusters had several (5–14) private alleles, extremely recent divergence is suggested. As all taxa except for A. spBigeye’ and the unidentified specimens also occur or at least occurred in Lake Victoria, it is likely that they evolved as part of the Lake Victoria superflock, while A. spBigeye’ and the unidentified specimens may have currently evolved in situ. The observation of slightly distinct albeit overlapping body shapes and the extremely close genetic relationship between three of the five taxa are fully compatible and in support of the hybrid swarm theory of adaptive radiation.  相似文献   

5.
    
Contact zones between two evolutionary lineages are often useful for understanding the process of speciation because the observed genetic pattern reflects the history of differentiation. The Eurasian lacertid lizard Zootoca vivipara is a potentially interesting model for studying the role of reproductive mode in the speciation of squamate reptiles because it has both oviparous (Zootoca vivipara carniolica) and viviparous (Zootoca vivipara vivipara) populations that have recently been shown to be genetically distinct. We studied a newly‐discovered syntopic area of these two Zootoca subspecies in the central Italian Alps using genetic markers to investigate the level of introgression between them. Patterns of genetic differentiation in a fragment of the mitochondrial DNA cytb gene and a set of nuclear microsatellites show that the speciation process is complete in this area, with no evidence of recent introgression. Phylogenetic and genotypic divergence suggests that the two subspecies have experienced long independent evolutionary histories, during which genetic and phenotypic differences evolved. The possible roles of biogeography, reproductive mode, and cytogenetic differentiation in this speciation process are discussed. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 566–573.  相似文献   

6.
    
The genetic variation within and between wild apple samples (Malus sylvestris) and cultivated apple trees was investigated with amplified fragment length polymorphisms (AFLP) and microsatellite markers to develop a conservation genetics programme for the endangered wild apple in Belgium. In total, 76 putative wild apples (originating from Belgium and Germany), six presumed hybrids and 39 cultivars were typed at 12 simple sequence repeats (SSR) and 139 amplified fragment length polymorphism (AFLP) loci. Principal co-ordinate analysis and a model-based clustering method classified the apples into three major gene pools: wild Malus sylvestris genotypes, edible cultivars and ornamental cultivars. All presumed hybrids and two individuals (one Belgian, one German) sampled as M. sylvestris were assigned completely to the edible cultivar gene pool, revealing that cultivated genotypes are present in the wild. However, gene flow between wild and cultivated gene pools is shown to be almost absent, with only three genotypes that showed evidence of admixture between the wild and edible cultivar gene pools. Wild apples sampled in Belgium and Germany constitute gene pools that are clearly differentiated from cultivars and although some geographical pattern of genetic differentiation among wild apple populations exists, most variation is concentrated within samples. Concordant conclusions were obtained from AFLP and SSR markers, which showed highly significant correlations in both among-genotypes and among-samples genetic distances.  相似文献   

7.
    
Abbott CL  Double MC 《Molecular ecology》2003,12(11):2953-2962
Six variable microsatellite loci were used to examine genetic structuring in the closely related shy albatross (Thalassarche cauta) and white-capped albatross (T. steadi). First, levels of genetic differentiation between the species, and among three populations within each species, were analysed using amova, FST and RST. We found high levels of genetic structuring and detected many unshared alleles between the species, which provide strong evidence against any contemporary gene flow between them. Within each species, shy albatross populations were found to be genetically distinct whereas white-capped albatross populations were undifferentiated, which implies that dispersal events are much rarer in the former than in the latter. These results formed the basis for the recommendation that the three white-capped albatross populations (as a whole) and each shy albatross population be treated as separate units for conservation. Second, levels of genetic diversity and allelic patterns in shy and white-capped albatrosses were assessed for whether they support earlier mtDNA results suggesting that shy albatrosses arose through range expansion of white-capped albatrosses. All measures indicated lower genetic diversity within shy albatrosses than within white-capped albatrosses and upheld the hypothesis that shy albatrosses were founded by white-capped albatrosses.  相似文献   

8.
    
Understanding genetic structure and diversity information is critical for genetic association studies. In the octoploid cultivated strawberry (Fragaria×ananassa), genetic analyses were focussed on diversity, whereas genetic structure has been poorly explored. This study investigated the genetic structure in a genetic resources collection representing a wide range of the octoploid strawberry cultivars released mainly by North America and western and southern Europe, at different breeding periods and with various pedigrees. The relationship between varieties was examined using 23 microsatellite (simple sequence repeat, SSR) markers. Eight SSR markers were diploid, useful for cultivar discrimination with polymorphic information content (PIC) values between 0.29 and 0.74. Bayesian analyses of genetic structure identified four subpopulations. Three of them, American and modern northern European cultivars (AMNECs), American and modern southern European cultivars (AMSECs) and old European cultivars (OECs), reflected the European breeding history of the cultivated octoploid strawberry. The fourth subpopulation, ‘Intermediate’ group cultivars (IGCs), comprised various origins including OECs that were introgressed with wild species such as Fragaria chiloensis or Fragaria moschata. The OEC group gathered cultivars dating before 1960s, forming the most homogenous and stable subpopulation. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on modified Nei and Li distance confirmed the separation of the AMSEC, AMNEC and OEC groups. In addition, significant differences were observed among the four subpopulations (AMNEC, AMSEC, OEC, IGC), with high variability within groups and between AMSEC and IGC. Our work underlined that the structure within the studied collection was mainly explained by the pedigree and the year of release than the geographical origin of cultivars. In addition, the important loss of diversity observed in the modern European cultivars and a trend towards using mainly American cultivars for breeding programmes led to the progressive abandonment of old European germplasm, which was revealed as a relative distinct and rich group. This European material should be protected and maintained, because it represents a potential source of original traits for broadening the genetic base of cultivated strawberry. In addition, diploid markers we identified can be used without ambiguity in phylogenetic and diversity studies, because they are genome‐specific. This study is the first step for further association studies in strawberry.  相似文献   

9.
    
Simulated genotypes, Bayesian analyses and molecular genetic data were used to detect individuals of hybrid origin and hybrid introgression between the Australian bass ( Macquaria novemaculeata ), a species extensively stocked in Australia, and estuary perch ( Macquaria colonorum ). Based on this analytical framework, 93% of the hybrids up to three generations later could be distinguished from the Australian bass. Individuals of hybrid origin were identified in all three rivers sampled. In addition, this study verified the fertility of hybrids between Australian bass and estuary perch as determined through genomic introgression. This study exemplifies an analytical procedure that has implications for identifying suitable individuals for use in breeding and restocking programmes for other species.  相似文献   

10.
    
Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole‐genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region—the previously described subspecies (“fulvescens”) from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.  相似文献   

11.
    
While speciation can be found in the presence of gene flow, it is not clear what impact this gene flow has on genome- and range-wide patterns of differentiation. Here we examine gene flow across the entire range of the common sunflower, H. annuus , its historically allopatric sister species H. argophyllus and a more distantly related, sympatric relative H. petiolaris . Analysis of genotypes at 26 microsatellite loci in 1015 individuals from across the range of the three species showed substantial introgression between geographically proximal populations of H. annuus and H. petiolaris , limited introgression between H. annuus and H. argophyllus , and essentially no gene flow between the allopatric pair, H. argophyllus and H. petiolaris. Analysis of sequence divergence levels among the three species in 1420 orthologs identified from EST databases identified a subset of loci showing extremely low divergence between H. annuus and H. petiolaris and extremely high divergence between the sister species H. annuus and H. argophyllus , consistent with introgression between H. annuus and H. petiolaris at these loci. Thus, at many loci, the allopatric sister species are more genetically divergent than the more distantly related sympatric species, which have exchanged genes across much of the genome while remaining morphologically and ecologically distinct.  相似文献   

12.
    
The Australian bass is a catadromous species found in drainages of southeastern Australia. As an economically important resource that is declining in number, the Australian bass is currently extensively stocked in New South Wales and Victoria to meet the requirements of fisheries programs. We have developed six microsatellite markers that amplify in both Australian bass and the congeneric estuary perch. These markers are useful for investigating population genetic structure and for identifying hybrids between these two species.  相似文献   

13.
    
Allopolyploidy is a significant mechanism of plant speciation, and many allopolyploid species have arisen recurrently. However, the probability that allopolyploidization between the same two parental species could lead to the origin of different taxa has received little attention. Here we used a new progenitor‐specific amplicon sequencing method to demonstrate the independent origins of two yarrow species, Achillea alpina L. and Achillea wilsoniana Heimerl ex Hand.‐Mazz., through allotetraploidy from the same diploid progenitor species pair, Achillea acuminata (Ledeb.) Sch. Bip. and Achillea asiatica Serg. Based on the sequences of 17 nuclear genes from 21 wild populations of the four Achillea species investigated, a clear view of genetic structure and demographic history was obtained with each species. Significant genetic differentiation was evident between the two tetraploid species. Two genetically distinguishable groups were detected within one of the progenitor, A. acuminata, and ancestors belonging to those two groups contributed to the two tetraploid species. Excluding fixed heterozygosity, we detected extremely low genetic diversity in many populations of both tetraploid species. Approximate Bayesian computation indicated that both tetraploid species originated before the Last Glacial Maximum, and nearly all diploid lineages went through population declines after the allopolyploidization events. Our study indicates that independent allopolyploidization events between the same Achillea parental species have generated two genetically and ecologically distinct taxa.  相似文献   

14.
  总被引:1,自引:0,他引:1  
Abstract.— Experimental and comparative evidence implies that homoploid hybrid speciation is a reproducible process, mediated in part by ecological selection. Here, molecular data from the chloroplast genome and 17 nuclear microsatellite loci were employed to determine whether a well-documented homoploid hybrid species, Helianthus paradoxus , has arisen multiple times. Helianthus paradoxus is ecologically divergent from its parental species, and has a disjunct geographic distribution consistent with multiple origins. The molecular data, however, strongly support a single hybrid origin. First, all sampled populations of H. paradoxus are fixed for a single chloroplast DNA (cpDNA) haplotype, whereas local populations of both parental species, H. annuus and H. petiolaris , have multiple cpDNA haplotypes. Second, H. paradoxus populations form a single, well-supported clade (99.8% bootstrap support) in a neighbor-joining tree based on microsatellite allele frequencies. The microsatellite data also tentatively place the origin of H. paradoxus between 75,000 years and 208,000 years before present, indicating that anthropogenic disturbance likely did not play a role in the formation of this species. Finally, the genetic structure of this species is not consistent with passive riparian dispersal, which has been suggested for other wetland plant species, but may be explained by dispersal mechanisms implicated for H. annuus , such as large migratory mammals.  相似文献   

15.
The genetic diversity of Bhutanese chickens needs to be understood in order to develop a suitable conservation strategy for these birds in Bhutan. In this, work, we used microsatellite markers to examine the genetic diversity of Bhutanese chickens. Four Bhutanese chicken varieties (Black plumage, Frizzle, Naked neck and Red Junglefowl-like, corresponding to Yuebjha Narp, Phulom, Khuilay and Seim, respectively), two subspecies of Red Junglefowl (Gallus gallus gallus and Gallus gallus spadecieus), two varieties of Thai native chickens (Pradhu Hang Dam and Chee; Gallus gallus domesticus) representing the Southeast Asian domestic chicken, and two commercial lines (Broiler and Single Comb White Leghorn) were genotyped with 18 microsatellites that included 16 loci recommended by the FAO/ISAG for investigations of genetic variability in chickens. All loci were polymorphic, with the number of alleles ranging from six (MCW0111) to 23 (MCW0183). Substantial genetic variation was observed in all populations, with the Bhutanese native chicken Yuebjha Narp (Black plumage chicken) showing the lowest genetic variability. Despite extensive intrapopulation variation, the genetic differentiation among 10 populations was moderate. A neighbor-joining tree revealed the genetic relationships involved while principal component analysis showed that Bhutanese native chickens should be given priority in conservation efforts because of their genetic distinctiveness. Chee chickens are especially valuable as a reservoir of predomestic diversity, as indicated by their greater genetic variation and their position in the phylogenetic tree.  相似文献   

16.
    
Based on genetic differentiation, the haploid dioecious bryophyte taxa Polytrichum commune and P. uliginosum have been inferred to be completely reproductively isolated. However, analysing diploid sporophytes from a sympatric population for three diagnostic microsatellite markers, we show here that reproductive isolation between these taxa is far more complex and highly asymmetric. Isolation between female-P. communex male-P. uliginosum seems to be complete and prezygotic (or early postzygotic) as no hybrid sporophytes were observed on P. commune females. In the other direction ( female-P. uliginosumx male-P. commune) isolation was clearly postzygotic as high frequencies of hybrid sporophytes were found on P. uliginosum females. However, during maturation these sporophytes showed irregular development, indicating that hybrid sporophytes are unlikely to produce ripe spores. Mechanisms possibly underlying this asymmetric reproductive isolation pattern are discussed. Notwithstanding hybrid offspring being unlikely, the high frequency of hybrid sporophytes observed suggests that viable spores may be formed occasionally through such rare processes as chromosome nondisjunction, possibly giving rise to allodiploids. Allodiploids have been reported in Polytrichum (and other bryophyte genera). Studies such as the one presented here will therefore help to elucidate the evolutionary importance of interspecific hybridization and allodiploidization in bryophyte speciation.  相似文献   

17.
    
To understand factors shaping species boundaries in closely related taxa, a powerful approach is to compare levels of genetic admixture at multiple points of contact and determine how this relates to intrinsic and extrinsic factors, such as genetic, morphological and ecological differentiation. In the Australian Alps, the threatened alpine bog skink Pseudemoia cryodroma co‐occurs with two morphologically and ecologically similar congeners, P. entrecasteauxii and P. pagenstecheri, and all three species are suspected to hybridize. We predicted that the frequency of hybridization should be negatively correlated with genetic divergence, morphological differentiation and microhabitat separation. We tested this hypothesis using a mitochondrial locus, 13 microsatellite loci, morphological and microhabitat data and compared results across three geographically isolated sites. Despite strong genetic structure between species, we detected hybridization between all species pairs, including evidence of backcrossed individuals at the two sites where all three species are syntopic. Hybridization frequencies were not consistently associated with genetic, morphological or ecological differentiation. Furthermore, P. entrecasteauxii and P. pagenstecheri only hybridized at the two sites where they are syntopic with P. cryodroma, but not at the largest site where P. cryodroma was not recorded, suggesting that P. cryodroma may serve as a bridging species. This study reveals the complex dynamics within a three species hybrid zone and provides a baseline for assessing the impact of climate change and anthropogenic habitat modification on future hybridization frequencies.  相似文献   

18.
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.  相似文献   

19.
极濒危植物中华水韭休宁居群的遗传结构   总被引:12,自引:0,他引:12  
采用超薄平板微型聚丙烯酰胺等电聚焦电泳方法对极濒危蕨类植物中华水韭(Isoetes sinensis)现存于安徽休宁的5个亚居群的等位酶多样性和遗传结构进行了研究。结果表明:中华水韭居群每位点平均等位基因数A=1.7,平均多态位点比率P=55.56%,平均预期杂合度He=0.201。居群中半数的多念位点表现为等位基因的“固定杂合”,5个亚居群的遗传多样性无显著差异,但都表现出严重偏离Hardy—Weinberg平衡的杂合子过昔;其遗传变异主要发生于亚居群内(94.27%),亚居群之间的遗传分化较小(Gsl=0.0573),亚居群间遗传一致度较高(I=0.960—0.999)。我们推断这可能是由于居群构建之初的奠基者效应或者原种群曾经历了较为严重的遗传瓶颈所导致;此外亚居群间便利的基因交流也可能起到了很大作用(Nm=4.5062)。取自休宁居群的75株样品由13个专一多位点基因型(18个位点等位酶基因型)组成,亚居群及个体间高度遗传均质。本文还就中华水韭休宁野生居群濒危的遗传因素进行了探讨,并提出了相应的保育策略。  相似文献   

20.
In birds, widespread species complexes often exhibit dramatic plumage differences across their distribution, which can give rise to discordance between morphotypes and phylogroups. Accurate identification of species diversity may require an integrated approach in which multilocus genetic data are used for inference and further corroborated by ecological, morphometric or behavioural data. Pomatorhinus gravivox and P. swinhoei, which were formerly considered component races of P. erythrogenys, were recently split using a delimitation system that mainly relied on the quantification of differences in phenotypic traits. We therefore carried out a reassessment of this taxonomic recommendation by conducting phylogenetic and population genetic analyses with multilocus genetic data. A deep mitochondrial split with a Kimura 2-parameter distance of 0.061 was observed, mainly corresponding to the two morphologically defined species. However, one individual from P. swinhoei harboured a haplotype of P. gravivox. Individual-based analyses of nuclear loci identified two distinct clusters that were exactly congruent with the two species. BPP delimitation also provided support for the separation. These congruencies support the notion that these two taxa are best regarded as two separate species. The presence of the P. gravivox mitochondrial haplotype in P. swinhoei was most likely a result of hybridization, due to the clear separation of nuclear loci. The speciation might be attributed to paleoclimatic changes but requires further evaluation due to the likelihood of ecological speciation. This study was in accordance with the results inferred from the quantitative system but highlighted the importance of sampling various data, especially in contact zones, in the study of taxonomy and speciation history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号