首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
1.
1. The ascorbate reducibility of cytochrome c (beef or horse heart) in its complexes with cytochrome c oxidase (beef heart) and cytochrome c peroxidase (yeast) has been studied.  相似文献   

3.
(1) The kinetics of the reduction by duroquinol of the prosthetic groups of QH2: cytochrome c oxidoreductase and of the formation of ubisemiquinone have been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) The formation of the antimycin-sensitive ubisemiquinone anion parallels the reduction of both high-potential and low-potential cytochrome b-562. (3) The rates of reduction of both the [2Fe-2S] clusters and cytochromes (c + c1) are pH dependent. There is, however, a pH-dependent discrepancy between their rate of reduction, which can be correlated with the difference in pH dependencies of their midpoint potentials. (4) Lowering the pH or the Q content results in a slower reduction of part of the [2Fe-2S] clusters. It is suggested that one cluster is reduced by a quinol/semiquinone couple and the other by a semiquinone/quinone couple. (5) Myxothiazol inhibits the reduction of the [2Fe-2S] clusters, cytochrome c1 and high-potential cytochrome b-562. (6) The results are consistent with a Q-cycle model describing the pathway of electrons through a dimeric QH2: cytochrome c oxidoreductase.  相似文献   

4.
The NADH:ubiquinone oxidoreductase (complex I) is the first enzyme of the respiratory chain and the entry point for most electrons. Generally, the bacterial complex I consists of 14 core subunits, homologues of which are also found in complex I of mitochondria. In complex I preparations from the hyperthermophilic bacterium Aquifex aeolicus we have identified 20 partially homologous subunits by combining MALDI-TOF and LILBID mass spectrometry methods. The subunits could be assigned to two different complex I isoforms, named NQOR1 and NQOR2. NQOR1 consists of subunits NuoA2, NuoB, NuoD2, NuoE, NuoF, NuoG, NuoI1, NuoH1, NuoJ1, NuoK1, NuoL1, NuoM1 and NuoN1, with an entire mass of 504.17?kDa. NQOR2 comprises subunits NuoA1, NuoB, NuoD1, NuoE, NuoF, NuoG, NuoH2, NuoI2, NuoJ1, NuoK1, NuoL2, NuoM2 and NuoN2, with a total mass of 523.99?kDa. Three Fe-S clusters could be identified by EPR spectroscopy in a preparation containing predominantly NQOR1. These were tentatively assigned to a binuclear center N1, and two tetranuclear centers, N2 and N4. The redox midpoint potentials of N1 and N2 are ?273?mV and ?184?mV, respectively. Specific activity assays indicated that NQOR1 from cells grown under low concentrations of oxygen was the more active form. Increasing the concentration of oxygen in the bacterial cultures induced formation of NQOR2 showing the lower specific activity.  相似文献   

5.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.  相似文献   

6.
7.
Electron transfer between the water-soluble cytochrome c and the integral membrane protein cytochrome c oxidase (COX) is the terminal reaction in the respiratory chain. The first step in this reaction is the diffusional association of cytochrome c toward COX, and it is still not completely clear whether cytochrome c diffuses in the bulk solution while encountering COX, or whether it prefers to diffuse laterally on the membrane surface. This is a rather crucial question, since in the latter case the association would be strongly dependent on the lipid composition and the presence of additional membrane proteins. We applied Brownian dynamics simulations to investigate the effect of an atomistically modeled dipalmitoyl phosphatidylcholine membrane on the association behavior of cytochrome c toward COX from Paracoccus denitrificans. We studied the negatively charged, physiological electron-transfer partner of COX, cytochrome c552, and the positively charged horse-heart cytochrome c. As expected, both cytochrome c species prefer diffusion in bulk solution while associating toward COX embedded in a membrane, where the partial charges of the lipids were switched off, and the corresponding optimal association pathways largely overlap with the association toward fully solvated COX. Remarkably, after switching on the lipid partial charges, both cytochrome c species were strongly attracted by the inhomogeneous charge distribution caused by the zwitterionic lipid headgroups. This effect is particularly enhanced for horse-heart cytochrome c and is stronger at lower ionic strength. We therefore conclude that in the presence of a polar or even a charged membrane, cytochrome c diffuses laterally rather than in three dimensions.  相似文献   

8.
Transient protein interactions mediate many vital cellular processes such as signal transduction or intermolecular electron transfer. However, due to difficulties associated with their structural characterization, little is known about the principles governing recognition and binding in weak transient protein complexes. In particular, it has not been well established whether binding hot spots, which are frequently found in strong static complexes, also govern transient protein interactions. To address this issue, we have investigated an electron transfer complex of physiological partners from yeast: yeast iso-1-cytochrome c (Cc) and yeast cytochrome c peroxidase (CcP). Using isothermal titration calorimetry and NMR spectroscopy, we show that Cc R13 is a hot-spot residue, as R13A mutation has a strong destabilizing effect on binding. Furthermore, we employ a double-mutant cycle to illustrate that Cc R13 interacts with CcP Y39. The present results, in combination with those of earlier mutational studies, have enabled us to outline the extent of the energetically important Cc-CcP binding region. Based on our analysis, we propose that binding energy hot spots, which are prevalent in static protein complexes, could also govern transient protein interactions.  相似文献   

9.
The periplasmic heme chaperone holoCcmE is essential for heme trafficking in the cytochrome c biosynthetic pathway in many bacteria, archaea, and plant mitochondria. This pathway, called system I, involves two steps: (i) formation and release of holoCcmE (by the ABC-transporter complex CcmABCD) and (ii) delivery of the heme in holoCcmE to the putative cytochrome c heme lyase complex, CcmFH. CcmFH is believed to facilitate the final covalent attachment of heme (from holoCcmE) to the apocytochrome c. Although most models for system I propose that holoCcmE delivers heme directly to CcmF, no interaction between holoCcmE and CcmF has been demonstrated. Here, a complex between holoCcmE and CcmF is “trapped”, purified, and characterized. HoloCcmE must be released from the ABC-transporter complex CcmABCD to interact with CcmF, and the holo-form of CcmE interacts with CcmF at levels at least 20-fold higher than apoCcmE. Two conserved histidines (here termed P-His1 and P-His2) in separate periplasmic loops in CcmF are required for interaction with holoCcmE, and evidence that P-His1 and P-His2 function as heme-binding ligands is presented. These results show that heme in holoCcmE is essential for complex formation with CcmF and that the heme of holoCcmE is coordinated by P-His1 and P-His2 within the WWD domain of CcmF. These features are strikingly similar to formation of the CcmC:heme:CcmE ternary complex [Richard-Fogal C, Kranz RG. The CcmC:heme:CcmE complex in heme trafficking and cytochrome c biosynthesis. J Mol Biol 2010;401:350–62] and suggest common mechanistic and structural aspects.  相似文献   

10.
In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a “floating boat bridge” of cytochrome c molecules (between complexes III and IV) in plant respirasome.  相似文献   

11.
Adrienne DeCorby  Leanne C. Sayles 《BBA》2007,1767(9):1157-1163
The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I.  相似文献   

12.
A superfamily of integral membrane proteins is characterized by a conserved tryptophan-rich region (called the WWD domain) in an external loop at the inner membrane surface. The three major members of this family (CcmC, CcmF, and CcsBA) are each involved in cytochrome c biosynthesis, yet the function of the WWD domain is unknown. It has been hypothesized that the WWD domain binds heme to present it to an acceptor protein (apoCcmE for CcmC or apocytochrome c for CcmF and CcsBA) such that the heme vinyl group(s) covalently attaches to the acceptors. Alternative proposals suggest that the WWD domain interacts directly with the acceptor protein (e.g., apoCcmE for CcmC). Here, it is shown that CcmC is only trapped with heme when its cognate acceptor protein CcmE is present. It is demonstrated that CcmE only interacts stably with CcmC when heme is present; thus, specific residues in each protein provide sites of interaction with heme to form this very stable complex. For the first time, evidence that the external WWD domain of CcmC interacts directly with heme is presented. Single and multiple substitutions of completely conserved residues in the WWD domain of CcmC alter the spectral properties of heme in the stable CcmC:heme:CcmE complexes. Moreover, some mutations reduce the binding of heme up to 100%. It is likely that endogenously synthesized heme enters the external WWD domain of CcmC either via a channel within this six-transmembrane-spanning protein or from the membrane. The data suggest that a specific heme channel (i.e., heme binding site within membrane spanning helices) is not present in CcmC, in contrast to the CcsBA protein. We discuss the likelihood that it is not important to protect the heme via trafficking in CcmC whereas it is critical in CcsBA.  相似文献   

13.
J. Wilms  J. Lub  R. Wever 《BBA》1980,589(2):324-335
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

14.
The kinetics of the formation and relaxation of transmembrane electric potential (Δψ) during the complete single turnover of CcO was studied in the bovine heart mitochondrial and the aa3-type Paracoccus denitrificans enzymes incorporated into proteoliposome membrane. The real-time Δψ kinetics was followed by the direct electrometry technique. The prompt oxidation of CcO and formation of the activated, oxidized (OH) state of the enzyme leaves the enzyme trapped in the open state that provides an internal leak for protons and thus facilitates dissipation of Δψ (τapp ≤ 0.5-0.8 s). By contrast, when the enzyme in the OH state is rapidly re-reduced by sequential electron delivery, Δψ dissipates much slower (τapp > 3 s). In P. denitrificans CcO proteoliposomes the accelerated Δψ dissipation is slowed down by a mutational block of the proton conductance through the D-, but not K-channel. We concluded that in contrast to the other intermediates the OH state of CcO is vulnerable to the elevated internal proton leak that proceeds via the D-channel.  相似文献   

15.
Cytochrome c oxidase couples the reduction of dioxygen to proton pumping against an electrochemical gradient. The D-channel, a 25-Å-long cavity, provides the principal pathway for the uptake of chemical and pumped protons. A water chain is thought to mediate the relay of protons via a Grotthuss mechanism through the D-channel, but it is interrupted at N139 in all available crystallographic structures. We use free-energy simulations to examine the proton uptake pathway in the wild type and in single-point mutants N139V and N139A, in which redox and pumping activities are compromised. We present a general approach for the calculation of water occupancy in protein cavities and demonstrate that combining efficient sampling algorithms with long simulation times (hundreds of nanoseconds) is required to achieve statistical convergence of equilibrium properties in the protein interior. The relative population of different conformational and hydration states of the D-channel is characterized. Results shed light on the role of N139 in the mechanism of proton uptake and clarify the physical basis for inactive phenotypes. The conformational isomerization of the N139 side chain is shown to act as a gate controlling the formation of a functional water chain or “proton wire.” In the closed state of N139, the spatial distribution of water in the D-channel is consistent with available crystallographic models. However, a metastable state of N139 opens up a narrow bottleneck in which 50% occupancy by a water molecule establishes a proton pathway throughout the D-channel. Results for N139V suggest that blockage of proton uptake resulting from persistent interruption of the water pathway is the cause of this mutant's marginal oxidase activity. In contrast, results for N139A indicate that the D-channel is a continuously hydrated cavity, implying that the decoupling of oxidase activity from proton pumping measured in this mutant is not due to interruption of the proton relay chain.  相似文献   

16.
The increasing availability of sequenced genomes enables the reconstruction of the evolutionary history of large protein complexes. Here, we trace the evolution of NADH:ubiquinone oxidoreductase (Complex I), which has increased in size, by so-called supernumary subunits, from 14 subunits in the bacteria to 30 in the plants and algae, 37 in the fungi and 46 in the mammals. Using a combination of pair-wise and profile-based sequence comparisons at the levels of proteins and the DNA of the sequenced eukaryotic genomes, combined with phylogenetic analyses to establish orthology relationships, we were able to (1) trace the origin of six of the supernumerary subunits to the alpha-proteobacterial ancestor of the mitochondria, (2) detect previously unidentified homology relations between subunits from fungi and mammals, (3) detect previously unidentified subunits in the genomes of several species and (4) document several cases of gene duplications among supernumerary subunits in the eukaryotes. One of these, a duplication of N7BM (B17.2), is particularly interesting as it has been lost from genomes that have also lost Complex I proteins, making it a candidate for a Complex I interacting protein. A parsimonious reconstruction of eukaryotic Complex I evolution shows an initial increase in size that predates the separation of plants, fungi and metazoa, followed by a gradual adding and incidental losses of subunits in the various evolutionary lineages. This evolutionary scenario is in contrast to that for Complex I in the prokaryotes, for which the combination of several separate, and previously independently functioning modules into a single complex has been proposed.  相似文献   

17.
A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.  相似文献   

18.
Yuri Silkin 《BBA》2007,1767(2):143-150
Succinate dehydrogenase (complex II or succinate:ubiquinone oxidoreductase) is a tetrameric, membrane-bound enzyme that catalyzes the oxidation of succinate and the reduction of ubiquinone in the mitochondrial respiratory chain. Two electrons from succinate are transferred one at a time through a flavin cofactor and a chain of iron-sulfur clusters to reduce ubiquinone to an ubisemiquinone intermediate and to ubiquinol. Residues that form the proximal quinone-binding site (QP) must recognize ubiquinone, stabilize the ubisemiquinone intermediate, and protonate the ubiquinone to ubiquinol, while minimizing the production of reactive oxygen species. We have investigated the role of the yeast Sdh4p Tyr-89, which forms a hydrogen bond with ubiquinone in the QP site. This tyrosine residue is conserved in all succinate:ubiquinone oxidoreductases studied to date. In the human SDH, mutation of this tyrosine to cysteine results in paraganglioma, tumors of the parasympathetic ganglia in the head and neck. We demonstrate that Tyr-89 is essential for ubiquinone reductase activity and that mutation of Tyr-89 to other residues does not increase the production of reactive oxygen species. Our results support a role for Tyr-89 in the protonation of ubiquinone and argue that the generation of reactive oxygen species is not causative of tumor formation.  相似文献   

19.
1. In mitochondrial particles antimycin binds to two separate specific sites with dissociation constants Kd1 ≦ 4 · 10?13M and Kd2 = 3 · 10?9M, respectively.2. The concentrations of the two antimycin binding sites are about equal. The absolute concentration for each binding site is about 100 – 150 pmol per mg of mitochondrial protein.3. Antimycin bound to the stronger site mainly inhibits NADH- and succinate oxidase. Binding of antimycin to the weaker binding site inhibits the electron flux to exogenously added cytochrome c after blocking cytochrome oxidase by KCN.4. Under certain conditions cytochrome b and c1 are dispensible components for antimycin-sensitive electron transport.5. A model of the respiratory chain in yeast is proposed which accounts for the results reported here and previously. (Lang, B., Burger, G. and Bandlow, W. (1974) Biochim. Biophys. Acta 368, 71–85).  相似文献   

20.
Myxothiazol, an inhibitor of the ubiquinol oxidase site of the ubiquinol: cytochrome c2 oxidoreductase complex, has been shown in the present work to inhibit a part of the electrogenic process indicated by phase III of the carotenoid change, in addition to the part of the change inhibited by antimycin. This finding shows that there is an antimycin-insensitive, but myxothiazol-sensitive portion of the slow phase, which indicates the existence of an electrogenic event within the ubiquinol: cytochrome c2 oxidoreductase complex, in addition to that linked to oxidation of cytochrome b-561 which has been previously characterized. Redox titrations show that the appearance of the new electrogenic step is correlated with the amount of cytochrome b-561 available in the oxidized form before the flash. The rate of the antimycin-insensitive and myxothiazol-sensitive portion of the carotenoid change correlates well with the rate of reduction of cytochrome b-561. No carotenoid change associated with reduction of cytochrome b-566 was seen. These findings suggest that the newly identified electrogenic process is linked to electron transfer between cytochrome b-566 and b-561. Calculations of the contribution of this new electrogenic step to the total electrogenic event within the complex show that electrons passing from cytochrome b-566 to cytochrome b-561 pass about 35–50% of the distance across the whole membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号