共查询到20条相似文献,搜索用时 0 毫秒
1.
Sebastian Pukszta Brenda Schilke Rafal Dutkiewicz Jacek Kominek Kaja Moczulska Barbara Stepien Krista G Reitenga Janusz M Bujnicki Barry Williams Elizabeth A Craig Jaroslaw Marszalek 《EMBO reports》2010,11(5):360-365
Molecular mechanisms by which protein–protein interactions are preserved or lost after gene duplication are not understood. Taking advantage of the well–studied yeast mtHsp70:J–protein molecular chaperone system, we considered whether changes in partner proteins accompanied specialization of gene duplicates. Here, we report that existence of the Hsp70 Ssq1, which arose by duplication of the gene encoding multifunction mtHsp70 and specializes in iron–sulphur cluster biogenesis, correlates with functional and structural changes in the J domain of its J–protein partner Jac1. All species encoding this shorter alternative version of the J domain share a common ancestry, suggesting that all short JAC1 proteins arose from a single deletion event. Construction of a variant that extended the length of the J domain of a ‘short’ Jac1 enhanced its ability to partner with multifunctional Hsp70. Our data provide a causal link between changes in the J protein partner and specialization of duplicate Hsp70. 相似文献
2.
3.
4.
Malika Faouzi Frederic Hague Marie Potier Ahmed Ahidouch Henri Sevestre Halima Ouadid‐Ahidouch 《Journal of cellular physiology》2011,226(2):542-551
Breast cancer (BC) is the leading cancer in the world in terms of incidence and mortality in women. However, the mechanism by which BC develops remains largely unknown. The increase in cytosolic free Ca2+ can result in different physiological changes including cell growth and death. Orai isoforms are highly Ca2+ selective channels. In the present study, we analyzed Orai3 expression in normal and cancerous breast tissue samples, and its role in MCF‐7 BC and normal MCF‐10A mammary epithelial cell lines. We found that the expression of Orai3 mRNAs was higher in BC tissues and MCF‐7 cells than in normal tissues and MCF‐10A cells. Down‐regulation of Orai3 by siRNA inhibited MCF‐7 cell proliferation and arrested cell cycle at G1 phase. This phenomenon is associated with a reduction in CDKs 4/2 (cyclin‐dependent kinases) and cyclins E and D1 expression and an accumulation of p21Waf1/Cip1 (a cyclin‐dependent kinase inhibitor) and p53 (a tumor‐suppressing protein). Orai3 was also involved in MCF‐7 cell survival. Furthermore, Orai3 mediated Ca2+ entry and contributed to intracellular calcium concentration ([Ca2+]i). In MCF‐10A cells, silencing Orai3 failed to modify [Ca2+]i, cell proliferation, cell‐cycle progression, cyclins (D1, E), CDKs (4, 2), and p21Waf1/Cip1 expression. Our results provide strong evidence for a significant effect of Orai3 on BC cell growth in vitro and show that this effect is associated with the induction of cell cycle and apoptosis resistance. Our study highlights a possible role of Orai3 as therapeutic target in BC therapy. J. Cell. Physiol. 226: 542–551, 2011. © 2010 Wiley‐Liss, Inc. 相似文献
5.
Xiaobi Huang Yanzhi Yuan Chunhua Li Wei Wang Wei Guan Hui Chen Chaozhi Jin Junchen Wei Wanqiao Zhang Yongsheng Yang Qiongming Liu Ying Zhou Cuili Zhang Zhihao Wu Wangxiang Xu Ying Zhang Tao Liu Donghui Yu Yaping Zhang Liang Chen Dewu Zhu Xing Zhong Lixin Kang Xiang Gan Xiaolan Yu Qi Ma Jing Yan Li Zhou Zhongyang Liu Yunping Zhu Tao Zhou Fuchu He Xiaoming Yang 《Molecular systems biology》2011,7(1)
6.
7.
Mitotic spindle association of TACC3 requires Aurora‐A‐dependent stabilization of a cryptic α‐helix
下载免费PDF全文

Sarah Sabir Nimesh Joseph Cristina Gutiérrez‐Caballero Mark W Richards Nicolas Huguenin‐Dezot Jason W Chin Eileen J Kennedy Mark Pfuhl Stephen J Royle Fanni Gergely Richard Bayliss 《The EMBO journal》2018,37(8)
Aurora‐A regulates the recruitment of TACC3 to the mitotic spindle through a phospho‐dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora‐A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora‐A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical‐repeat region of CHC, not a recognized phospho‐reader domain. This potentially widespread mechanism of phospho‐recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding. 相似文献
8.
本研究旨在探讨谷糠结合态多酚(bound phenol of inner shell,BPIS)发挥抗乳腺癌细胞活性的作用机制。首先采用细胞计数法检测BPIS对乳腺癌细胞以及正常乳腺细胞活性的影响;然后综合运用SEA、SIB以及GeneCards等数据库获得BPIS和乳腺癌的相关靶点,并分析活性成分与作用靶点的互作网络以及通路。本研究筛选得到BPIS抗乳腺癌相关靶点39个,主要涉及糖脂代谢和细胞自噬等生物过程以及MAPK、PI3K/AKT、FoxO等多条信号通,表明BPIS抗乳腺癌是多成分、多靶点、多通路协同作用的过程,而与细胞死亡相关的细胞自噬很可能在BPIS抑制乳腺癌过程中发挥主要作用。 相似文献
9.
Hong Liu Yan Ma Hong-Wei He Jia-Ping Wang Jian-Dong Jiang Rong-Guang Shao 《Autophagy》2015,11(12):2323-2334
Autophagy, a self-catabolic process, has been found to be involved in abrogating the proliferation and metastasis of breast cancer. SLC9A3R1 (solute carrier family 9, subfamily A [NHE3, cation proton antiporter 3], member 3 regulator 1), a multifunctional scaffold protein, is involved in suppressing breast cancer cells proliferation and the SLC9A3R1-related signaling pathway regulates the activation of autophagy processes. However, the precise regulatory mechanism and signaling pathway of SLC9A3R1 in the regulation of autophagy processes in breast cancer cells remains unknown. Here, we report that the stability of BECN1, the major component of the autophagic core lipid kinase complex, is augmented in SLC9A3R1-overexpressing breast cancer MDA-MB-231 cells, subsequently stimulating autophagy by attenuating the interaction between BECN1 and BCL2. Initially, we found that SLC9A3R1 partially stimulated autophagy through the PTEN-PI3K-AKT1 signaling cascade in MDA-MB-231 cells. SLC9A3R1 then attenuated the interaction between BECN1 and BCL2 to stimulate the autophagic core lipid kinase complex. Further findings revealed that SLC9A3R1 bound to BECN1 and subsequently blocked ubiquitin-dependent BECN1 degradation. And the deletion of the C-terminal domain of SLC9A3R1 resulted in significantly reduced binding to BECN1. Moreover, the lack of C-terminal of SLC9A3R1 neither reduced the ubiquitination of BECN1 nor induced autophagy in breast cancer cells. The decrease in BECN1 degradation induced by SLC9A3R1 resulted in the activity of autophagy stimulation in breast cancer cells. These findings indicate that the SLC9A3R1-BECN1 signaling pathway participates in the activation of autophagy processes in breast cancer cells. 相似文献
10.
Akinori Ikeuchi Hideo Nakano Takuma Kamiya Tsuneo Yamane Yasuaki Kawarasaki 《Biotechnology progress》2010,26(4):945-953
An experimental methodology that facilitates functional analysis of numerous protein–protein interactions, which have been found in genome‐wide interactome researches, has long been awaited. We propose herein an antagonistic inhibition‐based approach. The antagonizing polypeptide is generated in the course of interaction domain mapping based on yeast 2‐hybrid (Y2H) screening coupled with in vitro convergence of the Y2H‐selected fragments, which is performed in a formatted procedure. Using the coupled methodology, we first performed a high‐resolution mapping of an interdomain interaction network within budding yeast's Dam1 complex. Dam1 complex is a kinetochore protein complex composed of 10 essential subunits including Spc34p and Spc19p. The high‐resolution mapping revealed the overall network structure within the complex for the first time: Dam1 components form into two separated subnetworks on N‐terminal scaffolding domains of Spc34p and Spc19p, and the coiled‐coil interaction in their C‐terminal domains connects the subnetworks. Secondly, we show that the domain fragments converged in the high‐resolution mapping acted as potent inhibitors for the endogenous interactions when episomally overexpressed. The in vivo Dam1 interaction targeting with the fragments conferred a similar phenotype on the host cells; a critical and irreversible damage, which was accompanied with disturbed budding and chromosome mis‐segregation as a result of disorganized spindle. These phenotypes were strongly related to the cellular function of the Dam1 complex. The results and approach we demonstrated herein not only shed light on the Dam1 molecular architecture but also pave the road to reverse‐interactome analysis and discoveries of novel drugs that target disease‐related protein–protein interactions. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
11.
A. IOAKIMLIOSSI P. KARAKITSOS K. ARONI C. MARKOPOULOS K. DELIVELIOTI J. GOGAS & K. KYRKOU 《Cytopathology》1997,8(3):171-176
The DNA content of ductal breast carcinomas of varying histological grade was measured using static image cytometry and correlated with pS2 expression in the tumour cells. Our study was performed on imprint of surgical biopsies of 60 women with ductal breast cancer. A statistically significant difference was observed between pS2 + expression and grade of malignancy ( P <0.001). The percentage of euploid tumours significantly decreased from grade I to grade II to grade III ( P =0.01). The percentage of aneuploid tumours increased from pS2 + to pS2 − breast tumours ( P <0.001). These findings may be indicative of pS2 and DNA ploidy alterations and tumour aggressiveness. 相似文献
12.
Justin D Smith Weihong Xu Sundari Suresh Molly Miranda Ana Maria Aparicio Michael Proctor Ronald W Davis Frederick P Roth Robert P St.Onge 《Molecular systems biology》2017,13(7)
Many cellular functions are mediated by protein–protein interaction networks, which are environment dependent. However, systematic measurement of interactions in diverse environments is required to better understand the relative importance of different mechanisms underlying network dynamics. To investigate environment‐dependent protein complex dynamics, we used a DNA‐barcode‐based multiplexed protein interaction assay in Saccharomyces cerevisiae to measure in vivo abundance of 1,379 binary protein complexes under 14 environments. Many binary complexes (55%) were environment dependent, especially those involving transmembrane transporters. We observed many concerted changes around highly connected proteins, and overall network dynamics suggested that “concerted” protein‐centered changes are prevalent. Under a diauxic shift in carbon source from glucose to ethanol, a mass‐action‐based model using relative mRNA levels explained an estimated 47% of the observed variance in binary complex abundance and predicted the direction of concerted binary complex changes with 88% accuracy. Thus, we provide a resource of yeast protein interaction measurements across diverse environments and illustrate the value of this resource in revealing mechanisms of network dynamics. 相似文献
13.
《Epigenetics》2013,8(3):237-245
Estrogen signaling is mediated by ERα and ERβ in hormone dependent, breast cancer (BC). Over the last decade the implication of epigenetic pathways in BC tumorigenesis has emerged: cancer-related epigenetic modifications are implicated in both gene expression regulation, and chromosomal instability. In this review, the epigenetic-mediated estrogen signaling, controlling both ER level and ER-targeted gene expression in BC, are discussed: (1) ER silencing is frequently observed in BC and is often associated with epigenetic regulations while chemical epigenetic modulators restore ER expression and increase response to treatment;(2) ER-targeted gene expression is tightly regulated by co-recruitment of ER and both coactivators/corepressors including HATs, HDACs, HMTs, Dnmts and Polycomb proteins. 相似文献
14.
Cationic lytic‐type peptides have been studied for clinical application in various infections and cancers, but their functional cellular mechanisms remain unclear. We generated anti‐cancer epithelial growth factor receptor (EGFR)‐lytic hybrid peptide, a 32‐amino‐acid peptide composed of an EGFR‐binding sequence and lytic sequence. In this study, we investigated the distribution of EGFR‐lytic hybrid peptide in BxPC‐3 human pancreatic cancer cells by an immunocytochemical (ICC) method. Distribution of EGFR protein expression was unchanged after treatment with EGFR‐lytic peptide compared with non‐treated cells. In confocal laser scanning microscopy, immunostaining of EGFR‐lytic peptide was observed in the cytoplasm, mostly in the form of granules. Some staining was also localized on the mitochondrial membrane. At the ultrastructure level, cells treated with EGFR‐lytic peptide had a low electron density, disappearance of microvilli, and swollen mitochondria. Fragments of cell membrane were also observed in the proximity of the membrane. In immunoelectron microscopy, EGFR‐lytic peptide was observed in the cell membrane and cytoplasm. A number of granules were considered swollen mitochondria. Activation of the caspase pathway as a result of mitochondrial dysfunction was also examined to determine the cytotoxic activity of EGFR‐lytic peptide; however, no effect on cell death after EGFR‐lytic treatment was observed, and moreover, apoptosis was not found to play a critical role in the cell death mechanism. These results suggest that EGFR‐lytic peptide is localized on cell and mitochondrial membranes, with disintegration of the cell membrane contributing mainly to cell death. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
15.
Gustav N Sundell Roland Arnold Muhammad Ali Piangfan Naksukpaiboon Julien Orts Peter Güntert Celestine N Chi Ylva Ivarsson 《Molecular systems biology》2018,14(8)
A key function of reversible protein phosphorylation is to regulate protein–protein interactions, many of which involve short linear motifs (3–12 amino acids). Motif‐based interactions are difficult to capture because of their often low‐to‐moderate affinities. Here, we describe phosphomimetic proteomic peptide‐phage display, a powerful method for simultaneously finding motif‐based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C‐terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD‐95/Dlg/ZO‐1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR. We uncover site‐specific phospho‐regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho‐regulation of motif‐based interactions on a large scale. 相似文献
16.
Dennis Kappei Falk Butter Christian Benda Marion Scheibe Irena Draškovič Michelle Stevense Clara Lopes Novo Claire Basquin Masatake Araki Kimi Araki Dragomir Blazhev Krastev Ralf Kittler Rolf Jessberger J Arturo Londoño‐Vallejo Matthias Mann Frank Buchholz 《The EMBO journal》2013,32(12):1681-1701
Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase–telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC‐based DNA–protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere‐binding protein 1 (HOT1). HOT1 directly and specifically binds double‐stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase‐dependent telomere elongation. 相似文献
17.
18.
Takashi Suzuki Koko Moriya Kei Nagatoshi Yoshinobu Ota Toru Ezure Eiji Ando Susumu Tsunasawa Toshihiko Utsumi 《Proteomics》2010,10(9):1780-1793
To establish a strategy for the comprehensive identification of human N‐myristoylated proteins, the susceptibility of human cDNA clones to protein N‐myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell‐free protein synthesis system. One‐hundred‐and‐forty‐one cDNA clones with N‐terminal Met‐Gly motifs were selected as potential candidates from ~2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N‐myristoylation was evaluated using fusion proteins, in which the N‐terminal ten amino acid residues were fused to an epitope‐tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N‐myristoylated. The metabolic labeling experiments both in an insect cell‐free protein synthesis system and in the transfected COS‐1 cells using full‐length cDNA revealed that 27 out of 29 proteins were in fact N‐myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N‐myristoylated proteins that have not been reported previously to be N‐myristoylated, indicating that this strategy is useful for the comprehensive identification of human N‐myristoylated proteins from human cDNA resources. 相似文献
19.
LuTHy: a double‐readout bioluminescence‐based two‐hybrid technology for quantitative mapping of protein–protein interactions in mammalian cells
下载免费PDF全文

Philipp Trepte Sabrina Kruse Simona Kostova Sheila Hoffmann Alexander Buntru Anne Tempelmeier Christopher Secker Lisa Diez Aline Schulz Konrad Klockmeier Martina Zenkner Sabrina Golusik Kirstin Rau Sigrid Schnoegl Craig C Garner Erich E Wanker 《Molecular systems biology》2018,14(7)
Information on protein–protein interactions (PPIs) is of critical importance for studying complex biological systems and developing therapeutic strategies. Here, we present a double‐readout bioluminescence‐based two‐hybrid technology, termed LuTHy, which provides two quantitative scores in one experimental procedure when testing binary interactions. PPIs are first monitored in cells by quantification of bioluminescence resonance energy transfer (BRET) and, following cell lysis, are again quantitatively assessed by luminescence‐based co‐precipitation (LuC). The double‐readout procedure detects interactions with higher sensitivity than traditional single‐readout methods and is broadly applicable, for example, for detecting the effects of small molecules or disease‐causing mutations on PPIs. Applying LuTHy in a focused screen, we identified 42 interactions for the presynaptic chaperone CSPα, causative to adult‐onset neuronal ceroid lipofuscinosis (ANCL), a progressive neurodegenerative disease. Nearly 50% of PPIs were found to be affected when studying the effect of the disease‐causing missense mutations L115R and ?L116 in CSPα with LuTHy. Our study presents a robust, sensitive research tool with high utility for investigating the molecular mechanisms by which disease‐associated mutations impair protein activity in biological systems. 相似文献
20.
Tumor‐stroma interactions differentially alter drug sensitivity based on the origin of stromal cells
下载免费PDF全文

Benjamin D Landry Thomas Leete Ryan Richards Peter Cruz‐Gordillo Hannah R Schwartz Megan E Honeywell Gary Ren Alyssa D Schwartz Shelly R Peyton Michael J Lee 《Molecular systems biology》2018,14(8)
Due to tumor heterogeneity, most believe that effective treatments should be tailored to the features of an individual tumor or tumor subclass. It is still unclear, however, what information should be considered for optimal disease stratification, and most prior work focuses on tumor genomics. Here, we focus on the tumor microenvironment. Using a large‐scale coculture assay optimized to measure drug‐induced cell death, we identify tumor–stroma interactions that modulate drug sensitivity. Our data show that the chemo‐insensitivity typically associated with aggressive subtypes of breast cancer is not observed if these cells are grown in 2D or 3D monoculture, but is manifested when these cells are cocultured with stromal cells, such as fibroblasts. Furthermore, we find that fibroblasts influence drug responses in two distinct and divergent manners, associated with the tissue from which the fibroblasts were harvested. These divergent phenotypes occur regardless of the drug tested and result from modulation of apoptotic priming within tumor cells. Our study highlights unexpected diversity in tumor–stroma interactions, and we reveal new principles that dictate how fibroblasts alter tumor drug responses. 相似文献