首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative analysis of fish estuary association guilds was undertaken on some 190 South African estuaries. This pioneering study spanned three zoogeographic regions and included three broad estuarine types. The guild compositions of the estuaries were compared based on an importance value, incorporating taxonomic composition, numerical abundance and relative biomass. Multivariate analyses included both inter‐regional (zoogeographic) and intra‐regional (estuarine typology) comparisons. The major estuary‐associated guilds (estuarine species and marine migrant species) were important in all estuary types within all biogeographic regions. Significant differences both between regions and between estuary types within regions, however, were recorded. Cool–temperate estuaries were generally dominated by migratory species (estuarine migrants and marine migrant opportunists) while the importance of species dependent on estuaries (estuarine residents and estuarine‐dependent marine migrants) was higher in warm–temperate and subtropical regions. The significance of estuarine nursery areas, particularly in regions where estuaries are few in number, is highlighted. In terms of typology, migratory species assumed a greater importance in predominantly open systems, while freshwater and estuarine‐resident species were more important in predominantly closed systems. Predominantly closed estuaries, however, were also important for marine migrant species, which further highlights the significance of these systems as nursery areas for fishes.  相似文献   

2.
Synopsis Some 190 South African estuaries, covering all biogeographic provinces within the region, were classified into three types based on a combination of mouth condition and estuary size (surface area). The fish communities of the estuary types within each zoogeographic region were described and compared. Multivariate analyses revealed that each estuary type contained somewhat distinct fish communities. In addition, the study identified common patterns in species richness and ichthyofaunal composition. Open estuaries have relatively high species richness; this is a reflection of a permanent or near-permanent connection with the sea which allows access into these estuaries by all marine migrant species within the region. Intermittent connection with the sea limits the recruitment and utilisation of closed estuaries by marine migrant species; this results in reduced species richness in moderate to large closed estuaries. Small closed estuaries exhibit the lowest species richness and this is probably a result of their limited habitat and increased isolation from the sea. The key fishes that utilise estuaries could also be categorised into a number of groups based on their relative importance within each estuary type. Some species are largely restricted to predominantly open systems. Other taxa, while important in predominantly open estuaries, also occur in moderate to large closed systems. Some estuarine-associated species are well represented in all estuary types but exhibit a greater importance in closed estuaries. This study has shown that South African fish communities not only reflect estuarine typology but also respond to these differences in a consistent manner that spans all zoogeographic regions. The prevalence of similar patterns in other parts of the world suggests that estuarine typology is a major driver in the structuring of global estuarine fish communities.  相似文献   

3.
Estuaries are well known for their role as nutrient and detrital sinks that stimulate high levels of both primary and secondary production which, in turn, support a large biomass of fishes per unit area. This study reviews available information on coastal fish biomasses (g m?2 wet mass) and productivity (g m?2 wet mass year?1) in order to place South African data on these topics into a global perspective. Using biogeographic fish productivity estimates, together with estuarine water area, the approximate annual teleost production in South African estuaries was calculated at 585, 1706 and 13 904 t in the cool temperate, warm temperate and subtropical regions, respectively. Total annual fish production in estuaries on the subcontinent is conservatively estimated at 16 195 t, but this figure is likely to fluctuate widely, depending on recruitment success and annual environmental conditions pertaining to these systems. Approximately 2000 t of fish are estimated to be harvested by fishing activities in South African estuaries each year, which represents c. 12% of annual fish production. Although this figure may appear sustainable, the reality is that there are a few heavily targeted estuary‐associated marine species at the top of the food chain that are being overexploited by both anglers and subsistence fishermen. Natural mortalities due to piscivorous fish and bird predation has been estimated at c. 3% of total fish biomass per month in the East Kleinemonde Estuary, but this figure will vary considerably depending on bird abundance and foraging patterns along the coast. In contrast to catches made by the fishermen, piscivorous fishes and birds are targeting mainly juvenile marine fish and small estuarine resident species that are very abundant and generally low down in the food web.  相似文献   

4.
Anthropogenic activities such as land‐use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific‐wide and regional (1,000s–10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human‐induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both “top‐down” (fishing of predators) and “bottom‐up” (degradation of benthic communities) contexts.  相似文献   

5.
Fatty acids are the main components of lipids and are necessary for the production and permeability of cell membranes, playing an essential role in the physiological responses of organisms. The biochemical composition of zooplankton might be used as bio-indicators of the trophic status of aquatic ecosystems. Aiming to fill the gap of knowledge in tropical estuaries, the main aim of this study was to test if the fatty acid profiles can reveal spatial and temporal shifts in the diet of copepods and therefore can be used as indicators of the trophic status of estuarine systems. We investigated the fatty acids composition of copepod species and their possible food sources along the salinity gradient of two tropical estuaries (Paraíba do Norte and Mamanguape estuaries, northeastern Brazil), during the rainy and dry seasons. We found clear seasonal differences regarding fatty acids composition and concentration in copepods, with maximal concentrations and diversity of total fatty acids during the rainy season. The copepods species were mainly carnivorous in the dry season and omnivorous in the rainy season and, in both estuaries, the diet of most copepods was dependent on food availability. The fatty acid profiles suggest that, in general, feeding patterns of zooplankton change spatially and temporally, reflecting the shifts in their food sources abundance (i.e., dominance among diatoms and flagellates, terrestrial detritus and small animals). We observed a residual proportion of terrestrial detritus and green algae in the diets and these items were only present in the dry season. Furthermore, the food sources in the Paraiba do Norte estuary, a system with high levels of anthropogenic disturbance, showed lower feeding quality, with lower essential fatty acids concentrations. Our study showed that fatty acid profiles can be used as ecological indicator to assess seasonal and spatial shifts in the trophic ecology of copepods in tropical estuaries and to distinguish systems with different levels of human impact in a fast and accurate way.  相似文献   

6.
Understanding trophic relationships of fish in estuarine ecosystem is an important element for sustainable resource management. This study examined the feeding habits of 29 dominant fish species, characterized the trophic guilds, assessed the impact of season and clarified the role of diets in structuring the fish community in the mouth region of Pattani Bay, Thailand. Samples of 5792 fishes collected monthly by gillnets from March 2019 to February 2020 were used for stomach content analyses. It was found that the number of food types and fullness index differed between fish taxa (P < 0.001). Most fishes were specialist feeders feeding on specific food components and were categorized into five trophic guilds: piscivore, shrimp-fish feeder, polychaete feeder, zooplanktivore and planktivore. Six species were piscivorous, considered as apex predators, that fed almost entirely on fishes. High diet overlaps among some species (>0.6) were recorded. Not much variation in seasonal guilds was observed: four guilds in the dry season, three in the moderate rainy season and four in the rainy season. Some species remained in the same guild the whole year round, but some fishes changed seasonally. Two fish communities from different regions of the bay were segregated based on feeding habits. The inner bay community comprised mainly copepod and plankton feeders, but there were more piscivores in the deeper bay mouth area. Results from this study help us to understand the feeding habits and trophic guilds of dominant fish species at the mouth of this tropical estuarine bay.  相似文献   

7.
In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free‐living stages of parasites are food items for free‐living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.  相似文献   

8.
Using a novel approach to the assessment of ecological quality status of estuarine ecosystems, this study hypothesizes that compared to adult fishes and other components, the younger fish stages will be more sensitive and act as an early warning and will reflect more effectively the ecological status of estuaries. Larval stages of fishes were used to assess the ecological quality status (EQS) of four NW Portuguese estuaries, with different types and magnitudes of human pressures. The larval fish assemblages, together with water column characteristics and pollution indicators (faecal contamination and nutrient load) were sampled in the Lima, Cávado, Ave and Douro estuaries, during spring and autumn 2009. The four estuaries were classified in terms of human pressures by a global pressure index that identified the Cávado estuary as the least impacted estuary, followed by the Ave and Lima, both classified as moderately impacted system, while the Douro was classified as a highly impacted system. The Ave emerged as the most polluted system, carrying the highest nutrient load and sewage contamination. Larval fish assemblages included estuarine species, marine migrants, marine stragglers and the larger estuaries had higher species richness. Compared to adult fishes, three multimetric fish-based indices classified the Cávado, Ave and Douro estuaries with a lower ecological status when fish larvae were used. Similarly, the EQS assessed by macroinvertebrates were equal or higher when compared with fish larvae results. The EQS assessed by fish larvae was negatively correlated with sewage contamination and nitrogen nutrients, but did not reflect other anthropogenic pressures expressed by the global pressure index, which was only detected by adult fish. Fish larvae assessments were able to detect short-time events of hydrological manipulations observed in the Cávado estuary, as well as a seasonal decrease of water quality especially evident in the Ave estuary. The indices used denoted some limitations to the use of fish larvae data, thus emphasising the need for new indices to test the observed tendency for lower EQS given by fish larvae. The advantages and disadvantages of using fish larvae as more sensitive and accurate bioindicators of ecosystem integrity is also discussed as a means of providing strategically important information for improved estuarine management.  相似文献   

9.
韩瑞  陈求稳  王丽  汤新武  沈新强 《生态学报》2016,36(15):4907-4918
利用Ecopath with Ecosim在前期研究的基础上构建了3个时期(2000年秋、2006年秋、2012年秋)长江口水域生态系统的生态通道模型,分析对比了三峡工程蓄水前中后期,长江口水域生态系统结构与能量流动特征。模型将长江口水域生态系统划分为鱼类、虾类、蟹类、头足类、底栖动物、浮游动物、浮游植物、碎屑等17个功能组,基本覆盖了长江口生态系统能量流动的主要途径。模型结果分析表明:蓄水前中后期,长江口水域生态系统各功能组营养级组成和分布相近,但由于长江口渔业过度捕捞,蓄水中后期多数功能组的生态营养转换率被动提高。长江口渔获物的组成未发生明显变化,但渔获物的平均营养级降低,渔获量减少。蓄水中后期,生态系统中牧食食物链的重要性增加,碎屑食物链的重要性降低,这与蓄水之后长江入海径流改变、泥沙量减少、陆源污染增加关系密切。结果表明,蓄水前中后期,生态系统均处于不成熟阶段,蓄水后生态系统总生物量、初级生产量及流向碎屑的能量呈降低趋势,但系统的净效率和再循环率升高。  相似文献   

10.
Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate‐driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33‐year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity = 6–19), polyhaline (salinity = 19–28), and euhaline (salinity = 29–32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river‐dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.  相似文献   

11.
Rocky reef habitat is common in many estuaries, yet its role as a habitat for fishes is poorly understood. There is also limited understanding of how access of coastal species into estuaries and habitat quality can affect the distribution of rocky reef fishes within estuaries. This study used baited remote underwater video stations to determine spatial patterns in fish assemblages associated with rocky reef habitat throughout a barrier estuary with a permanently open but restricted inlet. Estuarine rocky reefs provided habitat for a diverse assemblage of fishes, many of which were large juveniles and subadults. In the absence of a pronounced salinity or temperature gradient, a clear transition in fish assemblages occurred from coastal waters, through the inlet channel, to the central estuary, and into the inner estuary. The inlet channel, notably its narrowness and length, limits tidal input into this estuary, which acts as a significant impediment to the dispersal of many coastal fishes, and insufficient habitat excludes many coastal rocky reef species from the inner estuary. This study highlights the need to recognise estuarine rocky reefs as providing habitat for diverse fish assemblages and the role inlets play in restricting access of coastal species.  相似文献   

12.
The possible links between river flow, zooplankton abundance and the responses of zooplanktivorous fishes to physico‐chemical and food resource changes are assessed. To this end, the seasonal abundance, distribution and diet of the estuarine round‐herring Gilchristella aestuaria and Cape silverside Atherina breviceps were studied in the Kariega Estuary. Spatio‐temporal differences were determined for selected physico‐chemical variables, zooplankton abundance and zooplanktivorous fish abundance and distribution. Results indicated that, following a river flood event in winter (>30 m3 s?1), altered physico‐chemical conditions occurred throughout the estuary and depressed zooplankton stocks. Abundance of G. aestuaria was highest in spring, with this species dominant in the upper and middle zones of the estuary, while A. breviceps was dominant in summer and preferred the middle and lower zones. The catch per unit of effort of both zooplanktivores also declined significantly following the flooding, thus suggesting that these fishes are reliant on zooplankton as a primary food source for healthy populations. Copepods dominated the stomach contents of both fish species, indicating a potential for strong interspecific competition for food, particularly in the middle reaches. Temporal differences were evident in dietary overlap between the two zooplanktivorous fish species and were correlated with river flow, zooplankton availability and fish distribution. The findings of this study emphasize the close trophic linkages between zooplankton and zooplanktivorous fishes under changing estuarine environmental conditions, particularly river flow and provide important baseline information for similar studies elsewhere in South Africa and the rest of the world.  相似文献   

13.
A number of studies have used stable carbon isotopes to analyse aspects of the food web structure in South African estuaries but none has compared mangrove and non-mangrove estuarine food webs. This study compares the primary carbon sources utilised by the ichthyofauna in the Mngazana (with extensive mangroves) and Mngazi (without mangroves) estuaries. In contrast to the Kariega Estuary, where past research identified two basic carbon pathways, there were no clear carbon pathways within the Mngazi and Mngazana fish assemblages. Instead, the carbon isotopic values of fishes in both estuaries displayed a continuum rather than a tight clustering around particular energy sources. Most detritus feeders of the family Mugilidae from both estuaries were relatively more enriched (with carbon isotopic values ranging from ?16.9% to ?12.3%) than other fish taxa. The isotopic values of the mullet species suggest a diet derived from relatively enriched carbon sources such as benthic microalgae, the eelgrass Zostera and associated epiphytes. Based on the isotopic values, piscivorous fishes from both estuaries could not be linked to specific prey fish taxa, but clearly the mullet species were not their main food source. The invertebrate feeders that were common to both estuaries showed greater isotopic variations in the Mngazana Estuary (?24.7% to ?19.3%) than in the Mngazi Estuary (?21.9% to ?18.4%), probably reflecting the higher diversity of habitats and invertebrate prey items in the Mngazana system. Generally, the isotopic signatures of fishes from the Mngazi Estuary were more enriched than those from the Mngazana Estuary, thus indicating the possible effect of δ13C-depleted mangrove-derived carbon in the latter system.  相似文献   

14.
Fish communities from geomorphologically different mangrove forests showed distinct trophic structures. A mangrove area located near fringing reefs (Bouraké) was dominated by large invertebrate (> 2 mm) feeders (40.7% of total wet weight of the fish fauna) and herbivores (26.7%) whilst an estuarine mangrove (Ouenghi) was characterized by detritus feeders (28.2%), piscivorous (18.2%) and large invertebrate feeders (17.9%). In spite of these differences in trophic structure, similar food webs occurred in both areas, whereas the intensity of fluxes between trophic compartments was different. Resident species were usually at the base of the trophic structure. This component of the fish fauna used available sources of energy, such as microalgae in Bouraké or detritus and phytoplankton in Ouenghi. In contrast, transient species were high level predators, mainly piscivorous and large invertebrate feeders. These species actively contributed to net exports of energy from mangrove areas to nearby coastal habitats. Food webs and energy fluxes associated with trophic migration of fishes were particularly important in non-estuarine mangrove forests because of hydrologic conditions (salinity and turbidity) which were more suitable to the invasion of numerous marine foraging species (carangids, lutjanids, sphyraenids).  相似文献   

15.
This study compared the ichthyofaunal assemblages in 10 Eastern Cape Province, South Africa, estuaries to identify whether there were any structural variations between the assemblages and to determine the environmental and physical factors linked to these variations. Species belonging to both the marine migrant and estuarine resident groups, by consistent representation within each estuary grouping, were responsible for the separation of fish assemblage structures between the different types of systems. The data further revealed that fish assemblages in the three main types of estuaries investigated were distinct, linked primarily to estuary mouth status and estuary size.  相似文献   

16.
黄振远  王瑁  王文卿 《生态学报》2007,27(3):1206-1216
传统上认为红树林输出的有机质产生巨大的能流,支持了巨大的河口和近岸水域生态系统的次级生产。但能量标签技术的研究结果却显示红树林输出的有机质的作用并没有如此巨大。用红树碎屑难消化特性来解释此现象,此外数学模型模拟分析发现潮汐的稀释作用也可以解释这种现象。但这两者都不能解释,在其他初级生产者稀少时,红树材输出的有机质可以被大量利用的现象。在有红树林的河口和近海岸水域生态系统中,藻类等非红树初级生产者具有比红树植物更高的初级生产力,而且更容易被动物获得和消化。可以认为是藻类等巨大初级生产力的竞争作用导致红树初级生产在消费者组织中很难被发现,如此上面提到的难题就能得到很好的解决。此外能量标签技术检测出的是红树的初级生产在消费者组织中的相对比率,不是绝对数量值,从此角度看,能量标签技术的结果与传统观点不是矛盾而是互相补充的关系。由此推测红树的初级生产应该还是被消费者所利用,只是它们在消费者初级营养来源组成中占的比例并不大,但其绝对数量并不少。这与传统观点认为的红树的初级生产被大量利用,支撑了具有巨大的次级生产稍有不同。此外,能量标签技术在红树林生态系统中的适用性尚未检验;计算食物组成的数学工具不是很完善;实验设计上考虑的不够全面;对定量研究有一定的影响。  相似文献   

17.
Pavel Kratina  Monika Winder 《Oikos》2015,124(10):1337-1345
Ecologists and ecosystem managers often base their understanding of trophic dynamics on consumer and resource biomass. However, the factors that alter the relative nutritional value of resources are often poorly understood, despite their potential to decouple trophic interactions. Recent population declines in pelagic fishes of the upper San Francisco Estuary were not accompanied by an equivalent decrease in zooplankton biomass, which are the main resource for the fish and their larvae. It was hypothesized that changes in zooplankton nutritional conditions following the establishment of invasive species caused food‐quality related limitations for these higher‐order consumers. Using stable isotopes, elemental stoichiometry and fatty acid analyses for all dominant invasive and native zooplankton taxa and seston, we characterized the plankton community structure in the estuary and demonstrated taxon‐specific differences in their nutritional value. We then quantified the temporal dynamics in meso‐zooplankton proportions of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), polyunsaturated fatty acids (PUFA), and ratio of n3:n6 fatty acids. We found temporal increase in the community‐level DHA, n3 to n6 fatty acid ratio, decrease in the community‐level EPA and PUFA in the brackish water region, but no change in the bulk PUFA proportions in the freshwater region of the estuary. These changes were caused mainly by declines of native cladocerans that are rich in EPA and by an increase in the dominance of invasive taxa with high DHA concentrations, similar to that of native taxa. Although we showed temporal shifts in individual fatty acid classes, the proportion of the essential fatty acids remained relatively high, suggesting that nutritional prey availability for fish remained unchanged with the shift in species composition. We argue that the nutritional content of resource communities should be considered when analyzing the long‐term trophic dynamics and designing effective management and restoration strategies.  相似文献   

18.
The distribution of macroinvertebrates and fishes in Tasmanian estuaries   总被引:4,自引:0,他引:4  
The distributions of 390 taxa of benthic macroinvertebrates collected in forty-eight estuaries and 101 fish species collected in seventy-five Tasmanian estuaries were related to geographical and environmental variables. Distribution patterns for the two taxonomic groups were largely congruent at both between and within-estuary scales. Faunal composition and the number of species collected at a site were primarily related to site salinity, the biomass of seagrass and tidal range. At the broader estuary scale, the distributions of macroinvertebrate and fish assemblages were primarily correlated with the presence of an entrance bar. Species richness varied with geographical location for both macrofauna and fishes, with highest numbers of species occurring in the Furneaux Group, north-eastern Tasmania and south-eastern Tasmania. These patterns primarily reflected differences in estuary type between regions rather than concentrations of locally endemic species. Although the majority of species collected during the study were marine vagrants, they constituted a very low proportion of total animal densities within estuaries. Only four species considered exotic to Tasmania were identifed. Nearly all species recorded from Tasmanian estuaries occurred widely within the state and have also been recorded in south-eastern Australia. Only 1% of estuarine fish species and < 5% of invertebrate species were considered endemic to the state. The generally wide ranges of species around Tasmania were complicated by (i) the absence of most species from the west coast (ii) a small (< 10%) component of species that occurred only in the north-east and Furneaux Group (eastern Bass Strait), and (iii) a few species (< 5%) restricted to other regions. The low number of species recorded from estuaries along the western Tasmanian coast reflected extremely low faunal biomass in that area. This depression in biomass on the west coast was attributed to unusually low concentrations of dissolved nutrients in rivers and dark tannin-stained waters which greatly restricted algal photosynthesis and primary production.  相似文献   

19.
Meiofauna are ubiquitous in estuaries worldwide averaging 106 m?2. Abundance and species composition are controlled primarily by three physical factors: sediment particle size, temperature and salinity. While meiofauna are integral parts of estuarine food webs, the evidence that they are biologically controlled is equivocal. Top down (predation) control clearly does not regulate meiofaunal assemblages. Meiofauna reproduce so rapidly and are so abundant that predators cannot significantly reduce population size. Food quantity (bottom up control) also does not appear to limit meiofaunal abundance; there is little data on the effect of food quality. In estuarine sediments meiofauna: (i) facilitate biomineralization of organic matter and enhance nutrient regeneration; (ii) serve as food for a variety of higher trophic levels; and (iii) exhibit high sensitivity to anthropogenic inputs, making them excellent sentinels of estuarine pollution. Generally mineralization of organic matter is enhanced and bacterial production stimulated in the presence of meiofauna. Tannins from mangrove detritus in northern Queensland appear to inhibit meiofaunal abundance and therefore the role of meiofauna in breakdown of the leaves. Meiofauna, particularly copepods, are known foods for a variety of predators especially juvenile fish and the meiofaunal copepods are high in the essential fatty acids required by fish. The copepod’s fatty acid composition is like that of the microphytobenthos they eat; bacterial eaters (nematodes?) do not have the essential fatty acids necessary for fish. Most contaminants in estuaries reside in sediments, and meiofauna are intimately associated with sediments over their entire life-cycle, thus they are increasingly being used as pollution sentinels. Australian estuarine meiofauna research has been concentrated in Queensland, the Hunter River estuarine system in New South Wales, and Victoria’s coastal lagoons. Studies in northern Queensland have primarily concentrated on the role of nematodes in mineralization of organic matter, whereas those from southern Queensland have concentrated on the role of meiofauna as food for fish and as bacterial grazers. The New South Wales studies have concentrated on the Hunter River estuary and on the structure and function of marine nematode communities. In Victoria, several fish have been shown to eat meiofauna. The Australian world of meiofaunal research has hardly been touched; there are innumerable opportunities for meiofaunal studies. In contaminated estuarine sediments reduced trophic coupling between meiofauna and juvenile fish is a basic ecological question of habitat suitability, but also a question with relevance to management of estuarine resources. Because meiofauna have short lifecycles, the effects of a contaminant on the entire life-history can be assessed within a relatively short time. The use of modern molecular biology techniques to assess genetic diversity of meiofauna in contaminated vs uncontaminated sediments is a promising avenue for future research. Much of the important meiofaunal functions take place in very muddy substrata; thus, it is imperative to retain mudflats in estuaries.  相似文献   

20.
The role of riparian forests in the functioning of aquatic ecosystems is well known, and they are recognized as an important food source for riverine fauna. This study investigates the trophic structure of coastal freshwater stream fishes from a large conservation area in an Atlantic rainforest using stomach content and food availability analyses. Four samples were collected from 19 sample sites. Fishes were caught with electrofishing. Prey were sampled with trays, Surber, traps, and electrofishing to evaluate the availability of food resources. The diets of 20 fish species were determined from the stomach contents of 1691 individuals. Terrestrial and aquatic insects and detritus were the most consumed items. Fish diet and prey availability were not seasonally dependent. A cluster analysis showed five trophic functional groups: terrestrial insectivores, aquatic insectivores, detritivores, carnivores, and omnivores. Insectivores predominated in species richness (60%), abundance (47%) and biomass (39%). Allochthonous and autochthonous items were found in similar proportions in the environment; however, allochthonous items were representative for insectivores and detritivores, whereas autochthonous items were important for primarily aquatic insectivores. The preference for certain insects by insectivorous fishes was associated with food selectivity rather than the availability of the resource and demonstrated the strong relationship between feeding behavior and food preference. The absence of seasonal variation in the diets of the fishes was possibly related to the consistent food supply. Our results confirm the role of the forest as a food provider for stream fishes, such as terrestrial insects and plant debris/detritus (also consumed by aquatic insects, which subsequently serve as food for fish), highlighting the importance of conserving the Brazilian Atlantic rainforests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号