首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asparaginase catalyzes the degradation of L-asparagine to L-aspartic acid and ammonia, and is implicated in the catabolism of transported asparagine in sink tissues of higher plants. The Arabidopsis genome includes two genes, ASPGA1 and ASPGB1, belonging to distinct asparaginase subfamilies. Conditions of severe nitrogen limitation resulted in a slight decrease in seed size in wild-type Arabidopsis. However, this response was not observed in a homozygous T-DNA insertion mutant where ASPG genes had been inactivated. Under nitrogen-sufficient conditions, the ASPG mutant had elevated levels of free asparagine in mature seed. This phenotype was observed exclusively under conditions of low illumination, when a low ratio of carbon to nitrogen was translocated to the seed. Mutants deficient in one or both asparaginases were more sensitive than wild-type to inhibition of primary root elongation and root hair emergence by L-asparagine as a single nitrogen source. This enhanced inhibition was associated with increased accumulation of asparagine in the root of the double aspga1-1/-b1-1 mutant. This indicates that inhibition of root growth is likely elicited by asparagine itself or an asparagine-derived metabolite, other than the products of asparaginase, aspartic acid or ammonia. During germination, a fusion between the ASPGA1 promoter and beta-glucuronidase was expressed in endosperm cells starting at the micropylar end. Expression was initially high throughout the root and hypocotyl, but became restricted to the root tip after three days, which may indicate a transition to nitrogen-heterotrophic growth.  相似文献   

2.
Asparaginase depletes extracellular asparagine in the blood and is an important treatment for acute lymphoblastic leukemia (ALL) due to asparagine auxotrophy of ALL blasts. Unfortunately, resistance occurs and has been linked to expression of the enzyme asparagine synthetase (ASNS), which generates asparagine from intracellular sources. Although TP53 is the most frequently mutated gene in cancer overall, TP53 mutations are rare in ALL. However, TP53 mutation is associated with poor therapy response and occurs at higher frequency in relapsed ALL. The mutant p53-reactivating compound APR-246 (Eprenetapopt/PRIMA-1Met) is currently being tested in phase II and III clinical trials in several hematological malignancies with mutant TP53. Here we present CEllular Thermal Shift Assay (CETSA) data indicating that ASNS is a direct or indirect target of APR-246 via the active product methylene quinuclidinone (MQ). Furthermore, combination treatment with asparaginase and APR-246 resulted in synergistic growth suppression in ALL cell lines. Our results thus suggest a potential novel treatment strategy for ALL.Subject terms: Cancer therapy, Haematological cancer  相似文献   

3.
Bacterial L-asparaginases are enzymes that catalyze the hydrolysis of l-asparagine to aspartic acid. For the past 30 years, these enzymes have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. Their intrinsic low-rate glutaminase activity, however, causes serious side-effects, including neurotoxicity, hepatitis, coagulopathy, and other dysfunctions. Erwinia carotovora asparaginase shows decreased glutaminase activity, so it is believed to have fewer side-effects in leukemia therapy. To gain detailed insights into the properties of E. carotovora asparaginase, combined crystallographic, thermal stability and cytotoxic experiments were performed. The crystal structure of E. carotovoral-asparaginase in the presence of L-Asp was determined at 2.5 A resolution and refined to an R cryst of 19.2 (R free = 26.6%) with good stereochemistry. Cytotoxicity measurements revealed that E. carotovora asparaginase is 30 times less toxic than the Escherichia coli enzyme against human leukemia cell lines. Moreover, denaturing experiments showed that E. carotovora asparaginase has decreased thermodynamic stability as compared to the E. coli enzyme and is rapidly inactivated in the presence of urea. On the basis of these results, we propose that E. carotovora asparaginase has limited potential as an antileukemic drug, despite its promising low glutaminase activity. Our analysis may be applicable to the therapeutic evaluation of other asparaginases as well.  相似文献   

4.
L-asparaginase is important in the induction regimen for treating acute lymphoblastic leukemia. Cytotoxic complications are clinically significant problems lacking mechanistic insight. To reveal tissue-specific molecular responses to this drug, mice were administered asparaginase from either Escherichia coli (clinically used) or Wolinella succinogenes (novel, glutaminase-free form). Both enzymes abolished serum asparagine, but only the E. coli form reduced circulating glutamine. E. coli asparaginase reduced protein synthesis in liver and spleen but not pancreas via increased phosphorylation of the translation factor eIF2. In contrast, treatment with Wolinella caused no untoward changes in protein synthesis in any tissue examined. Treating mice deleted for the eIF2 kinase, GCN2, with the E. coli enzyme showed eIF2 phosphorylation to be GCN2-dependent, but only initially. Furthermore, although eIF2 phosphorylation was not increased in the pancreas or by Wolinella asparaginase, expression of the amino acid stress response genes, asparagine synthetase and CHOP/GADD153, increased as a result of both enzymes, even in tissues demonstrating no change in eIF2 phosphorylation. Finally, signaling downstream of the mammalian target of rapamycin kinase was repressed in liver and pancreas by E. coli but not Wolinella asparaginase. These data demonstrate that the nutrient stress response to asparaginase is tissue-specific and exacerbated by glutamine depletion. Importantly, increased expression of asparagine synthetase and CHOP does not require eIF2 phosphorylation, signifying alternate or auxiliary means of inducing gene expression under conditions of amino acid depletion in the whole animal.  相似文献   

5.
Asparaginase depletes circulating asparagine and glutamine, activating amino acid deprivation responses (AADR) such as phosphorylation of eukaryotic initiation factor 2 (p-eIF2) leading to increased mRNA levels of asparagine synthetase and CCAAT/enhancer-binding protein β homologous protein (CHOP) and decreased mammalian target of rapamycin complex 1 (mTORC1) signaling. The objectives of this study were to assess the role of the eIF2 kinases and protein kinase R-like endoplasmic reticulum resident kinase (PERK) in controlling AADR to asparaginase and to compare the effects of asparaginase on mTORC1 to that of rapamycin. In experiment 1, asparaginase increased hepatic p-eIF2 in wild-type mice and mice with a liver-specific PERK deletion but not in GCN2 null mice nor in GCN2-PERK double null livers. In experiment 2, wild-type and GCN2 null mice were treated with asparaginase (3 IU per g of body weight), rapamycin (2 mg per kg of body weight), or both. In wild-type mice, asparaginase but not rapamycin increased p-eIF2, p-ERK1/2, p-Akt, and mRNA levels of asparagine synthetase and CHOP in liver. Asparaginase and rapamycin each inhibited mTORC1 signaling in liver and pancreas but maximally together. In GCN2 null livers, all responses to asparaginase were precluded except CHOP mRNA expression, which remained partially elevated. Interestingly, rapamycin blocked CHOP induction by asparaginase in both wild-type and GCN2 null livers. These results indicate that GCN2 is required for activation of AADR to asparaginase in liver. Rapamycin modifies the hepatic AADR to asparaginase by preventing CHOP induction while maximizing inhibition of mTORC1.  相似文献   

6.
The enzyme asparaginase, which hydrolyses asparagine to aspartic acid, inhibited cell-free protein synthesis by reticulocyte lysates. The inhibition was rapid and complete when sufficient enzyme was added but could be prevented or reversed by the addition of asparagine. The initial effect of asparaginase appears to be a block in polypeptide chain elongation due to asparagine deprivation, but there are some indications that prolonged incubation under these conditions may give rise to a secondary decrease in initiation of protein synthesis.  相似文献   

7.
Asparagine, a major transport compound, is metabolized in Pisum sativum by two enzymes, asparaginase (EC 3.5.1.1) and asparagine-pyruvate aminotransferase. The relative amount of the two enzymes varies between tissues. In developing seeds, there are very high levels of asparaginase but only trace amounts of the aminotransferase. Asparaginase is high in young leaves but falls rapidly during leaf growth; the aminotransferase remains high throughout development. Inhibitor studies with aminooxyacetate and methionine sulfoximine confirm that the aminotransferase is the main enzyme involved in asparagine utilisation in the leaf. Root tissue has low levels of asparaginase and only trace amounts of the aminotransferase. The asparaginase is potassium dependent, but is also partially activated by ammonium ions. The leaf aminotransferase has a lower K m for asparagine (4.5 mM) than the leaf asparaginase (8 mM). The seed asparaginase has a lower K m for asparagine (3 mM) than the leaf asparaginase.  相似文献   

8.
Sequence analysis of enzymes with asparaginase activity   总被引:4,自引:0,他引:4  
Asparaginases catalyze the hydrolysis of asparagine to aspartic acid and ammonia. Enzymes with asparaginase activity play an important role both in the metabolism of all living organisms as well as in pharmacology. The main goal of this paper is to attempt a classification of all known enzymes with asparaginase activity, based on their amino acid sequences. Some possible phylogenetic consequences are also discussed using dendrograms and structural information derived from crystallographic studies.  相似文献   

9.
10.
Asparaginase isozyme II from Escherichia coli is a popular enzyme that has been used as a therapeutic agent against acute lymphoblastic leukemia. Here, fusion tag systems consisting of the pelB signal sequence and various lengths of repeated aspartate tags were devised to highly express and to release active asparaginase isozyme II extracellularly in E. coli. Among several constructs, recombinant asparaginase isozyme II fused with the pelB signal sequence and five aspartate tag was secreted efficiently into culture medium at 34.6 U/mg cell of specific activity. By batch fermentation, recombinant E. coli produced 40.8 U/ml asparaginase isozyme II in the medium. In addition, deletion of the gspDE gene reduced extracellular production of asparaginase isozyme II, indicating that secretion of recombinant asparaginase isozyme II was partially ascribed to the recognition by the general secretion machinery. This tag system composed of the pelB signal peptide, and repeated aspartates can be applied to extracellular production of other recombinant proteins.  相似文献   

11.
L-Asparaginase is an enzyme used in the treatment of acute lymphoblastic leukemia and other related malignancies. Its further use includes reduction of asparagine concentration in food products, which may lead to formation of acrylamide. Currently bacterial asparaginase is produced at industrial scale, but the enzyme isolated from bacterial origin is often associated with adverse reactions. These side effects require development of asparaginase from alternative sources. In the present study, Penicillium digitatum was explored for the production of extracellular L-asparaginase using modified Czapek–Dox media. The enzyme was purified about 60.95-fold and then kinetic study showed that the Km value of the enzyme was 1 × 10?5 M. The optimum pH and temperature for the enzyme were 7.0 and 30°C, respectively. The optimum incubation period for L-asparaginase was 15 min. This work concludes that this enzyme can be a suitable candidate due to its strong kinetic properties, and further research can usher into development of asparaginase formulation from fungal origin with less adverse effects.  相似文献   

12.
Saccharomyces cerevisiae X2180-1A synthesizes two forms of asparaginase: L-asparaginase I, an internal constitutive enzyme, and asparaginase II, an external enzyme which is secreted in response to nitrogen starvation. The two enzymes are biochemically and genetically distinct. The structural gene for asparaginase I (asp 1) is closely linked to the trp 4 gene on chromosome IV. The gene controlling the synthesis of asparaginase II is not linked to either the trp 4 or asp 1 genes. The rate of biosynthesis of asparaginase II is unaltered in yeast strains carrying the structural gene mutation for asparaginase I. Asparaginase II has been purified approximately 300-fold from crude extracts of Saccharomyces by heat and pH treatment, ethanol fractionation, ammonium sulfate fractionation followed by Sephadex G-25 chromatography, and DEAE-cellulose chromatography. Multiple activity peaks were obtained which, upon gas chromatographic analysis, exhibit varying mannose to protein ratios. Asparaginase I has been purified approximately 100-fold from crude extracts of Saccharomyces by protamine sulfate treatment, ammonium sulfate fractionation, gel permeation chromatography, and DEAE-cellulose chromatography. No carbohydrate component was observed upon gas chromatographic analysis. Comparative kinetic and analytic studies show the two enzymes have little in common except their ability to hydrolyze L-asparagine to L-aspartic acid and ammonia.  相似文献   

13.
聚乙二醇修饰重组人天冬酰胺酶的研究   总被引:2,自引:0,他引:2  
天冬酰胺酶对治疗急性淋巴细胞白血病和某些肿瘤疾病有很好的疗效,但由于其在人体内所产生的副作用———过敏反应限制了它的应用。目的:运用化学修饰剂聚乙二醇对天冬酰胺酶进行化学修饰,以降低其免疫原性,提高其在体内的半衰期;并使修饰后的天冬酰胺酶的活性保持较高的水平。结果:修饰后的天冬酰胺酶的免疫原性降低为原来的20-30%;用胰酶水解24h没有变化;而其比活力为未修饰酶的23%。该结果已经具备了很大的临床应用价值。  相似文献   

14.
Three human isolates of Vibrio succinogenes produced asparaginase. Apparent Km's were 87,220, and 320 microM. The rate of glutamine hydrolysis was between 2.8 and 3.5% of the rate of asparagine hydrolysis. Asparaginase production was not induced by ammonium ions, and enzyme yields were lower than those obtained with the rumen strain.  相似文献   

15.
Three human isolates of Vibrio succinogenes produced asparaginase. Apparent Km's were 87,220, and 320 microM. The rate of glutamine hydrolysis was between 2.8 and 3.5% of the rate of asparagine hydrolysis. Asparaginase production was not induced by ammonium ions, and enzyme yields were lower than those obtained with the rumen strain.  相似文献   

16.
The use of Escherichia coli asparaginase II as a drug for the treatment of acute lymphoblastic leukemia is complicated by the significant glutaminase side activity of the enzyme. To develop enzyme forms with reduced glutaminase activity, a number of variants with amino acid replacements in the vicinity of the substrate binding site were constructed and assayed for their kinetic and stability properties. We found that replacements of Asp248 affected glutamine turnover much more strongly than asparagine hydrolysis. In the wild-type enzyme, N248 modulates substrate binding to a neighboring subunit by hydrogen bonding to side chains that directly interact with the substrate. In variant N248A, the loss of transition state stabilization caused by the mutation was 15 kJ mol(-1) for L-glutamine compared to 4 kJ mol(-1) for L-aspartic beta-hydroxamate and 7 kJ mol(-1) for L-asparagine. Smaller differences were seen with other N248 variants. Modeling studies suggested that the selective reduction of glutaminase activity is the result of small conformational changes that affect active-site residues and catalytically relevant water molecules.  相似文献   

17.
Asparaginase (EC 3.5.1.1) activity reached a maximum 40 days post anthesis in developing seeds of Lupinus arboreus and this correlated with the appearance of other ammonia assimilatory enzymes. Asparaginase, purified from these developing seeds, was resolved into three isoforms, designated asparaginases A, B and C. A major protein species in asparaginase A preparations co-focussed with enzyme activity on an isoelectric focussing gel. When analysed by SDS-PAGE, asparaginase isoforms A and B each yielded several polypeptides with M(r)s in the 14,000 to 19,000 ranged. These peptides are fragmentation products of an M(r) 36,000 asparaginase subunit. Polyclonal antibodies raised against asparaginase isoforms A and B precipitated asparaginase activity from a partially purified L. arboreus seed extract. Immunoaffinity chromatography recovered polypeptides with M(r)s between 14,000 and 19,000. Partial protein sequences were obtained for these asparaginase polypeptides.  相似文献   

18.
19.
Pea leaf asparaginase is stabilized by asparagine and aspartateduring incubation. In crude extracts this effect was enhancedby products of the light reaction (NADPH, NADH, or reduced ferredoxin),but these compounds were ineffective on the purified enzyme,or in the absence of asparagine. MgATP, MgADP and oxidized ferredoxinreduced asparaginase activity in purified preparation reducedor oxidized glutathione had no effect. Asparaginase activitydoes not appear to be modulated via phosphorylation/dephosphorylation.The presence of calcium during extraction increased asparaginaseactivity more than 2-fold, but addition of calcium to extractsprepared in its absence had no effect; calmodulin had no effecton activity. Co-extraction of light- and dark-treated tissueshowed that soluble factors are not responsible for the diurnalvariation in asparaginase activity. Association of asparaginasewith membranes did not account for changes in extractable activity.Use of the protein synthesis inhibitors cycloheximide, puromycin,emetine, actinomycin D and cordycepin and the thiol proteaseinhibitor leupeptin suggested that mRNA and protein synthesisare required for the increase of asparaginase activity duringthe light period and that proteolytic degradation accounts forthe decrease during the dark. Key words: Pisum sativum, asparaginase, protein synthesis, proteolysis.  相似文献   

20.
Isoenzyme II of Escherichia coli L-asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) is among the few enzymes of major therapeutic importance, being used in the treatment of acute lymphoblastic leukemia. We have constructed several inducible expression systems that overproduce asparaginase II from recombinant plasmids. The most efficient of these systems consists of plasmid pTWE1, a derivative of pT7-7, and an ansB- strain of E. coli, CU1783. These cells produce and secrete amounts of asparaginase II that account for 10-15% of the total cellular protein. Most of the active recombinant enzyme can be released from the periplasmic space by a simple osmotic shock procedure. From the resulting material homogeneous asparaginase II was obtained by a two-step procedure. Overall yields of purified asparaginase were 10-15 mg asparaginase II per liter of E. coli culture. The recombinant enzyme appeared identical to conventionally purified preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号