首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Declines or mid-elevation peaks in invertebrate diversity with elevation are often attributed to climate and geometric constraints. However, vegetation structure may also drive diversity patterns, especially for tree-dwelling species, via its effects on microhabitat use and competitive interactions. Here we investigate these effects on the diversity and community structure of tree-nesting ants over elevation. We exhaustively sampled ant nests in 1254 trees within continuous plots of primary rainforest at low (200 m a.s.l.), mid (900 m a.s.l.) and high (1800 m a.s.l.) elevation in Papua New Guinea. Ant diversity, nest abundance and tree occupancy peaked at mid-elevation. Although host tree diversity also peaked at mid-elevation, there was low specialisation of ant species to tree species at all elevations. Mid-elevation trees hosted more species, more nests and a greater diversity of nest types than trees of a similar size at low or high elevation. Tree size and nest microhabitat use were the strongest predictors of species composition, explaining twice as much of the variability in the communities than elevation. At mid to high elevation there were proportionally fewer large nests than in the lowlands, with an increase in smaller nests in live hollow twigs and epiphytes. There was high species turnover between elevations, and between trees within elevations. Species co-occurrence patterns within trees differed with tree size, and with elevation. In large trees species tended to co-occur at random at low and high elevation, but co-occurred more often than expected by chance at mid elevation, indicating an elevational shift in competitive interactions. We conclude that the more extreme diurnal temperatures at higher elevations, combined with increased epiphyte availability, drive ants to nest in more insulated microhabitats. This results in smaller colony sizes and a decrease in interspecific competition, thereby boosting species co-existence at mid elevation.  相似文献   

2.
    
Global patters of species distributions and their underlying mechanisms are a major question in ecology, and the need for multi‐scale analyses has been recognized. Previous studies recognized climate, topography, habitat heterogeneity and disturbance as important variables affecting such patterns. Here we report on analyses of species composition – environment relationships among different taxonomic groups in two continents, and the components of such relationships, in the contiguous USA and Australia. We used partial Canonical Correspondence Analysis of occurrence records of mammals and breeding birds from the Global Biodiversity Information Facility, to quantify relationships between species composition and environmental variables in remote geographic regions at multiple spatial scales, with extents ranging from 105 to 107 km2 and sampling grids from 10 to 10,000 km2. We evaluated the concept that two elements contribute to the impact of environmental variables on composition: the strength of species' affinity to an environmental variable, and the amount of variance in the variable. To disentangle these two elements, we analyzed correlations between resulting trends and the amount of variance contained in different environmental variables to isolate the mechanisms behind the observed relationships. We found that climate and land use‐land cover are responsible for most explained variance in species composition, regardless of scale, taxonomic group and geographic region. However, the amount of variance in species composition attributed to land use / land cover (LULC) was closely related to the amount of intrinsic variability in LULC in the USA, but not in Australia, while the effect of climate on species composition was negatively correlated to the variability found in the climatic variables. The low variance in climate, compared to LULC, suggests that species in both taxonomic groups have strong affinity to climate, thus it has a strong effect on species distribution and community composition, while the opposite is true for LULC.  相似文献   

3.
Synopsis To better understand patterns of fish assemblage composition in Wisconsin streams in relation to major environmental gradients, I carried out multivariate direct gradient analysis (canonical correspondence analysis) of two large independent datasets on fish species abundance in Wisconsin streams. Analysis of the two datasets yielded similar results, suggesting that observed patterns and relationships were real. Stream sites were distributed along fish species-environment gradients, but segregation into distinct stream temperature and geographic groups was also evident. The strongest gradient in both datasets was related to summer water temperature patterns, and encompassed a transition from small, coldwater streams dominated by salmonids, cottids, certain cyprinids, and few other species, to both small and large, warmwater streams dominated by a high diversity of different cyprinids, catostomids, ictalurids, centrarchids, and percids. A second gradient in both datasets was complex but largely geographic. Within it, sites from each of the four ecoregions that occupy Wisconsin formed fairly discrete groups. The strongest differences were between sites in the two southern Wisconsin ecoregions, the Driftless Area and the Southeastern Wisconsin Till Plains, that were dominated by certain cyprinids, ictalurids, and centrarchids, and sites in the two northern Wisconsin ecoregions, the North Central Hardwood Forests and the Northern Lakes and Forests, that were dominated by a different set of cyprinids and ictalurids, plus some petromyzontids, salmonids, catostomids, and percids. Sites from the Driftless Area that were mostly higher-gradient (steep stream slope) and had many riffle-dwelling species could also be distinguished from sites in the Southeastern Wisconsin Till Plains that were mostly lower-gradient and had many pool-dwelling species. The patterns of fish assemblage composition among sites and the associated fish species-environment relationships that were revealed by the analyses provided a framework for developing an ecologically meaningful hierarchical classification of Wisconsin stream sites based on stream thermal regime, ecoregion, stream size, and stream gradient.  相似文献   

4.
    
The distribution and abundance of Thelypteris limbosperma, Athyrium distentifolium, and Matteuccia struthiopteris are modelled statistically in relation to 14 environmental variables along the major climatic, topographic, and edaphic gradients in western Norway. The data are from 624 stands from which measurements or estimates of mean January and mean July temperatures, humidity, altitude, aspect, and slope are available. From 182 of these stands eight soil variables have also been measured. The species responses are quantified by two numerical methods: Gaussian logit regression and weighted averaging (WA) regression. The estimated WA optima suggest that A. distentifolium has an ecological preference for low July and January temperatures, high altitudes, and soils of low-medium pH and base content. The species shows statistically significant Gaussian responses with summer temperature, humidity (= Martonnes humidity index), altitude, slope, aspect, pH, cation exchange capacity, and base saturation with optima of 8.7 °C, 188.9, 1220 m, 28°, 29°, 4.8, 13.77 mEq 100 g dry soil-1, and 13.4%, respectively. These suggest that the occurrence and relative abundance of A. distentifolium are well predicted by summer temperature, topography, and soil pH and base status. T. limbosperma has WA optima that suggest that it favours moderately high winter and summer temperatures, high humidity, medium altitude, and soils of low pH and base content. It has significant Gaussian responses to summer temperature (optimum =12.6 °C), winter temperature (-1.8 °C), humidity (179.2), altitude (459.5 m), slope (22.5°), and Na (0.7 mg 100 g dry soil-1). These suggest that climatic factors, altitude, and slope are significant predictors for its occurrence and abundance. M. struthiopteris has high WA optima for summer temperature, pH, Ca, Mg, K, Na, cation exchange capacity (CEC), and base saturation, and a low optima for humidity and winter temperature. Of these, summer temperature (16.0 °C), Ca (63.1 mg 100 g dry soil-1), Mg (41.0 mg 100 g dry soil-1), K (23.6 mg 100 g dry soil-1), Na (5.0 mg 100 g dry soil-1), CEC (60.7 mEq 100 g dry soil-1), and base saturation (56.3%) have significant Gaussian logit responses, as do aspect (150.2°) and loss-on-ignition (9.4%). These results suggest that the occurrence and relative abundance of M. struthiopteris are well predicted by high soil base cations, a generally southern aspect, low organic content in the soil, and high July temperatures.  相似文献   

5.
  总被引:1,自引:0,他引:1  
Biological diversities of multiple kingdoms potentially respond in similar ways to environmental changes. However, studies either compare details of microbial diversity across general vegetation or land use classes or relate details of plant community diversity with the extent of microbially governed soil processes, via physiological profiling. Here, we test the hypothesis of shared responses of plant and rhizosphere bacterial, fungal and metazoan biodiversities (especially across‐habitat β‐diversity patterns) along a disturbance gradient encompassing grazed to abandoned Alpine pasture, on acid soil in the European Central Alps. Rhizosphere biological diversity was inferred from eDNA fractions specific to bacteria, fungi and metazoans from contrasting plant habitats indicative of different disturbance levels. We found that soil β‐diversity patterns were weakly correlated with plant diversity measures and similarly ordinated along an evident edaphic (pH, C:N, assimilable P) and disturbance gradient but, contrary to our hypothesis, did not demonstrate the same diversity patterns. While plant communities were well separated along the disturbance gradient, correlating with fungal diversity, the majority of bacterial taxa were shared between disturbance levels (75% of bacteria were ubiquitous, cf. 29% plant species). Metazoa exhibited an intermediate response, with communities at the lowest levels of disturbance partially overlapping. Thus, plant and soil biological diversities were only loosely dependent and did not exhibit strictly linked environmental responses. This probably reflects the different spatial scales of organisms (and their habitats) and capacity to invest resources in persistent multicellular tissues, suggesting that vegetation responses to environmental change are unreliable indicators of below‐ground biodiversity responses.  相似文献   

6.
准确理解天然林林分群落特征及其与物种多样性耦合关系是提升天然林管理、达到多样性保护的关键。选择大兴安岭呼中地区典型落叶松林、杂木林、白桦落叶松林为研究对象,分别对乔木层、灌木层和草本层特征(高度、胸径、冠幅、盖度等)进行调查并计算丰富度指数、多样性指数和均匀度指数,旨在探究林分间差异及其耦合关系变化。结果表明:(1)乔木层的树高、枝下高表现出杂木林落叶松林白桦落叶松(P0.05);落叶松林的胸径比白桦落叶松林和杂木林的高出6%和11%;灌木层的高度、盖度、地径、冠幅和草本层多度、盖度、高度在森林类型间均未表现出显著差异。(2)3个森林类型的乔、灌、草丰富度指数R、Shannon-Wiener指数及Simpson指数均表现出杂木林最大,乔木层和草本层呈相同规律,即杂木林白桦落叶松林落叶松林,而灌木层表现出杂木林落叶松林白桦落叶松林;白桦落叶松林和杂木林的乔木层均匀度Pielou指数和Alatalo指数约为落叶松林的3倍左右,而在灌木层和草本层在森林类型间差异不显著(P0.05)。(3)典范对应分析(CCA)结果表明林分群落特征和生物多样性关系存在明显森林类型间差异。总体表现为灌木特征(冠幅、地径)、草本层特征(盖度、多度和高度)对多样性均有较大影响;白桦落叶松林和杂木林的胸径对多样性影响明显,而落叶松林的乔木高度(树高、枝下高)对多样性影响较大。杂木林随着灌木盖度、草本高度的增加,草本物种多样性降低、乔木多和灌木物种多样性增加;而落叶松林相同的多样性变化多伴随草本高度增加、多度和盖度变小。灌木层物种多样性增加多与乔木和草本物种多样性降低相伴随,在杂木林中同时伴随着乔木胸径和草本的盖度、多度增大、灌木冠幅变小,而白桦落叶松林则伴随灌木冠幅和草本多度盖度的减小。以上结果表明,林分群落特征与物种多样性存在耦合关系,上述解耦合结果为通过维持良好森林结构、多样性保护具有实践意义。  相似文献   

7.
The bat fauna of the Mora excelsa-dominated rainforest in the Victoria-Mayaro Forest Reserve (VMFR) in south-east Trinidad was assessed over a six-week period. Trapping effort totaled 271 mist net hours and caught 143 bats of 22 species at a rate of one bat every two net-hours. Simpsons diversity index (1/D) was 1.28 for primary Mora forest and extrapolation using Chaos' estimator, a non-parametric method, estimated the total number of species as 39. Phyllostomid bats of the subfamilies Phyllostominae and Stenodermatinae were well represented, and frugivores predominated in number, accounting for 77% of all captures in primary forest. The most abundant bat, the ground-storey frugivore, Carollia perspicillata, accounted for 43% of all captures in primary forest and, in contrast to most bats, was also abundant on man-made paths through the forest. Four species not previously recorded from the reserve, Tonatia bidens, Trachops cirrhosus, a Myotis sp., and the rare Phylloderma stenops, were captured, bringing the total number of bats species known from the reserve to 35. Thus, over half (52%) of Trinidad's 67 bat species occur in this one forest reserve, making it a high priority area for effective protection and management.  相似文献   

8.
Multiple Linear Regression (MLR) was used to estimate past salinity and ionic composition in sediments of a paleolake in the southernmost Bolivian Altiplano. Modern diatom assemblages were sampled from the subsurface sediments of 14 saline lagoons, and compared quantitatively with fossil assemblages. Only one application of the method is reported: to a Quaternary outcrop located on the border of one of them (Laguna Ballivian). Multivariate analysis was performed on diatom data to check the range of variation of both the fossil and modern flora. It also allowed a reduced set of explanatory variables for regression analysis. Finally, a number of transformations of the chemical variables was computed prior to the regression process in order to stabilize the residuals variance and obtain a good error estimate. Only ten chemical components were studied, but the method could be applied to other palaoenvironmental parameters.  相似文献   

9.
10.
  总被引:2,自引:0,他引:2  
1  This study documents patterns of rodent and bat diversity related to abiotic and biotic factors along elevational gradients in the Sierra Mazateca (640–2600 m a.s.l.) and Sierra Mixteca (700–3000 m a.s.l.) in Oaxaca, Mexico.
2  The two transects share similar faunas: 17 and 23 rodent species were captured in the sierras Mazateca and Mixteca, respectively, 14 of which occurred on both transects. Rodent species richness was similar in the wet season and the dry season along both transects. Rodent species richness peaked at 1025–1050 m in tropical semi-deciduous forest on both transects. Endemic species were restricted to high-elevation habitats.
3  Sixteen and 17 bat species were captured in the sierras Mazateca and Mixteca, respectively; 11 occurred on both transects. Bat species richness was higher in the wet season than in the dry season in the Sierra Mazateca. Bat species richness peaked at 1850 m in pine–oak forest in the Sierra Mazateca, and at 750 m and 1050 m in tropical semi-deciduous forest in the Sierra Mixteca, decreasing abruptly at higher elevations on both transects.
4  Patterns of trophic diversity of rodents and bats coincided with those of species richness on each transect. Species richness increased with increasing habitat diversity; increased with increasing rainfall and productivity; increased with increasing resource diversity; and increased in areas with high rates of speciation (rodents only).
5  The need for conservation action in Oaxaca is urgent and proponents should promote establishment of protected areas linking lowland habitats with high species richness to high-elevation habitats harbouring large numbers of endemic forms.  相似文献   

11.
This paper is an attempt, using statistical modelling techniques, to understand the patterns of vascular plant species richness at the poorly studied meso-scale within a relatively unexplored subarctic zone. Species richness is related to floristic-environmental composite variables, using occurrence data of vascular plants and environmental and spatial predictor variables in 362 1 km2 grid squares in the Kevo Nature Reserve. Species richness is modelled in two different way. First, by detecting the major floristic-environmental gradients with the ordination procedure of canonical correspondence analysis, and subsequently relating these ordination axes to species richness by generalized linear modelling. Second, species richness is directly related to the composite environmental factors of explanatory variables, using partial least squares regression. The most important explanatory variables, as suggested by both approaches, are relatively similar, and largely reflect the influence of altitude or altitudinally related variables in the models. The most prominent floristic gradient in the data runs from alpine habitats to river valleys, and this gradient is the main source of variation in species richness. Some local environmental variables are also relatively important predictors; the grid squares rich in vascular plant taxa are mainly located in the lowlands of the reserve and are characterised by rivers and brooks, as well as by abundant cliff walls. The two statistical models account for approximately the same amount of variation in the species richness, with more than half of the variation unexplained. Potential reasons for the relatively modest fit are discussed, and the results are compared to the characteristics of the diversity-environment relationships at both broader- and finer-scales.  相似文献   

12.
    
Aims Changes in the structure and composition of forests, whether caused by natural or anthropic events, alter the microenvironment, sometimes irreversibly. Since the local environment has a direct impact on basic ecological processes, this has become a key component of research. Mexican beech forests (Fagus grandifolia subsp. mexicana) in the Sierra Madre Oriental are restricted to sites with specific climate, soils and topography, making them an ideal natural system for ecological research. The objectives of this study were to identify the relationship between the microenvironment and the tree and shrub structure and composition of Mexican beech forests in the state of Hidalgo, and to compare the floristic similarity of these forests on the country scale using data from seven localities.Methods Specimens were collected for a period of one year at all localities in the state of Hidalgo where beech forests are located. At each locality, five 400 m 2 plots were established, and structural attributes (basal area, coverage, density and species richness) and six environmental variables were measured in the plots. The relationship between structure and microenvironment was estimated by simple correlation and canonic correspondence analysis (CCA). In addition, floristic similarity between different beech forest localities in the Sierra Madre Oriental was estimated by correspondence analysis (CA).Important findings Twenty tree species and eight shrub species were identified; at all localities studied F. grandifolia subsp. mexicana dominated the canopy. The multivariate analysis indicated that (i) in the four localities in the state of Hidalgo, all microenvironmental variables except pH are related to the variation observed in species composition and structure; (ii) the El Gosco locality had both tree and shrub species and microenvironmental factors different from those observed in the Fagus forests at the other localities in the study and (iii) the localities studied in order to draw country-scale comparisons could be divided into three groups by floristic similarity. The first group consisted of the Hidalgo localities, the second of the Veracruz localities, and the third, more different from the others, of the Tamaulipas locality. The results of this study provide the first reference for the relationship between the range of microenvironments and species structure in Mexican beech forests. Microenvironmental conditions in the larger beech forests could be used as a model for designing management and conservation programs for this plant association. Because of its particular ecological and historical characteristics, this association could serve as an example of biodiversity conservation in Mexico.  相似文献   

13.
    
Biodiversity is comprised of genetic and phenotypic variation among individual organisms, which might belong to the same species or to different species. Spatial patterns of biodiversity are of central interest in ecology and evolution for several reasons: to identify general patterns in nature (e.g. species–area relationships, latitudinal gradients), to inform conservation priorities (e.g. identifying hotspots, prioritizing management efforts) and to draw inferences about processes, historical or otherwise (e.g. adaptation, the centre of origin of particular clades). There are long traditions in ecology and evolutionary biology of examining spatial patterns of biodiversity among species (i.e. in multispecies communities) and within species, respectively, and there has been a recent surge of interest in studying these two types of pattern simultaneously. The idea is that examining both levels of diversity can materially advance the above‐stated goals and perhaps lead to entirely novel lines of inquiry. Here, we review two broad categories of approach to merging studies of inter‐ and intraspecific variation: (i) the study of phenotypic trait variation along environmental gradients and (ii) the study of relationships between patterns of molecular genetic variation within species and patterns of distribution and diversity across species. For the latter, we report a new meta‐analysis in which we find that correlations between species diversity and genetic diversity are generally positive and significantly stronger in studies with discrete sampling units (e.g. islands, lakes, forest fragments) than in studies with nondiscrete sampling units (e.g. equal‐area study plots). For each topic, we summarize the current state of knowledge and key future directions.  相似文献   

14.
A recent increase in studies of β diversity has yielded a confusing array of concepts, measures and methods. Here, we provide a roadmap of the most widely used and ecologically relevant approaches for analysis through a series of mission statements. We distinguish two types of β diversity: directional turnover along a gradient vs. non-directional variation. Different measures emphasize different properties of ecological data. Such properties include the degree of emphasis on presence/absence vs. relative abundance information and the inclusion vs. exclusion of joint absences. Judicious use of multiple measures in concert can uncover the underlying nature of patterns in β diversity for a given dataset. A case study of Indonesian coral assemblages shows the utility of a multi-faceted approach. We advocate careful consideration of relevant questions, matched by appropriate analyses. The rigorous application of null models will also help to reveal potential processes driving observed patterns in β diversity.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Predicting the response of species to environmental changes is a great and on‐going challenge for ecologists, and this requires a more in‐depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities’ responses to global environmental changes.  相似文献   

16.
  总被引:1,自引:0,他引:1  
  相似文献   

17.
    
Ecosystem restoration implies focusing on multiple trophic levels and ecosystem functioning, yet higher trophic levels, that is, animals, are less frequently targeted by restoration than plants. Habitat diversity, the spatial heterogeneity between and within habitat patches in a landscape, is a well‐known driver of species diversity, and offers possible ways to increase species diversity at multiple trophic levels. We argue that habitat diversity is central in whole‐ecosystem restoration as we review its importance, provide a practical definition for its components, and propose ways to target it in restoration. Restoration targeting habitat diversity is used commonly in aquatic ecosystems, mostly to increase the physical diversity of habitats, meant to provide more niches available to a higher number of animal species. To facilitate the uptake of habitat diversity in terrestrial ecosystem restoration, we distinguish between compositional and structural habitat diversity, because different animal groups will respond to different aspects of habitat diversity. We also propose four methods to increase habitat diversity: varying the starting conditions to obtain divergent successional pathways, emulating natural disturbances, establishing keystone structures, and applying ecosystem engineer species. We provide two case studies to illustrate how these components and methods can be incorporated in restoration. We conclude that targeting habitat diversity is a promising way to restore habitats for a multitude of species of animals and plants, and that it should become mainstream in restoration ecology and practice. We encourage the restoration community to consider compositional and structural habitat diversity and to specifically target habitat diversity in ecosystem restoration.  相似文献   

18.
环境因子对大亚湾人工鱼礁上附着生物分布的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
张伟  李纯厚  贾晓平  陈丕茂  方良 《生态学报》2009,29(8):4053-4060
通过对深圳大亚湾人工鱼礁区7个月(2008-04~2008-10)挂板实验,同时监测相应的环境因子指标.以附着生物丰度数据进行了除趋势对应分析(DCA),并根据附着生物丰度数据和7个环境因子进行了典范对应分析(CCA).共鉴定出附着生物54种,物种鉴定结果表明实验试板上的常见种有华美盘管虫 (Hydroides elegans)、三角藤壶( Balanus trigonus)、细肋肌蛤(Musculus mirandus)等.DCA种类排序图可明显地看出每种附着生物都有自己的分布中心和分布区域;CCA分析结果表明深度、透明度、溶解氧是影响附着生物群落变化的最主要环境因子,其次是盐度和温度.CCA排序图较好地反映了人工鱼礁上附着生物分布与各环境因子的相互关系.  相似文献   

19.
根据2010年1月(冬)、4月(春)、7月(夏)和11月(秋)对象山港人工鱼礁区及其邻近海域的网采浮游植物样品,共鉴定出浮游植物8门74属220种,主要由硅藻(168种)和甲藻(38种)组成。春、秋、冬季全区浮游植物丰度(分别为67.85、65.88和56.77×104个/m3)显著高于夏季(7.19×104个/m3),优势种主要有琼氏圆筛藻(Coscinodiscus jonesianus)、大洋角管藻(Cerataulina pelagica)、洛氏角毛藻(Chaetoceros lorenzianus)和罗氏角毛藻(C.lauderi)等,其中琼氏圆筛藻为全年的优势种,且在春、冬季为该海域的绝对优势种。浮游植物群落参数(丰度、chl a浓度、种类数、Shannon-Wiener多样性、Pielou均匀度和Margalef丰富度等指数)和环境因子(温度、盐度、透明度、pH值、DO、悬浮物、DIN、PO4-P和SiO3-Si浓度)均存在极显著的季节变化(P<0.001),但区域(鱼礁区与对照区)间基本无显著差异。聚类、多维尺度和相似性分析结果也表明,浮游植物群落组成存在显著季节差异(P=0.001),但区域间无显著差异。可见,人工鱼礁投放对网采浮游植物群落无显著影响。究其原因:(1)可能是该海域人工鱼礁投放数量不多,仅有230个水泥鱼礁体(共5000空立方),建礁时间也较短,导致其生态效应在短期内难以显著体现;(2)对照区与人工鱼礁区的距离较近,且采样站位均靠近岛屿,潮流和岛屿对浮游植物的影响可能超过了人工鱼礁投放对其的影响。典范对应分析(Canonical correspondence analysis,CCA)显示,影响浮游植物群落的主要因子依次为温度、营养盐、盐度和悬浮物。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号