首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
1. Surface water is an important dispersal vector for wetland plant species. However, most previous studies on hydrochory (i.e. water dispersal) have focused on ecosystems with relatively rapid water flow. Therefore, there is a need to study such dispersal in slow‐flowing or stagnant waterbodies, such as drainage ditches, which might act as dispersal corridors between habitat patches. 2. To gain insight into the mechanisms by which seeds are transported in drainage ditches, the effect of the velocity of wind and water on the rate of transport of floating seeds of three wetland species (Carex pseudocyperus L., Iris pseudacorus L. and Sparganium erectum L.) was investigated. Furthermore, in release and retrace experiments with painted C. pseudocyperus seeds, a number of factors potentially determining the probability of seed deposition were investigated. 3. Net wind speed was found to be the main factor determining the rate at which seeds are transported in drainage ditches. No relation between water flow at middepth in the ditches and seed transport was found. Wind speed and flow at the water surface were positively related. The effect of wind speed on the rate of transport of floating seeds was greater for S. erectum seeds, because a greater ratio of their volume protrudes from the water, than for C. pseudocyperus and I. pseudacorus seeds. 4. The principal factors that determine seed deposition were aquatic plant cover, ditch slope and indentations in the ditch bank. Seeds changed direction if the wind direction changed, or if there was a bend in the ditch. The final pattern of deposition was related to mean net wind speed. Mean transport distance after 2 days varied between 34 and 451 m. 5. Unlike in rivers, seed transport in ditches was determined by wind speed and direction, enabling multidirectional seed dispersal. We conclude that in slow‐flowing waters, wind is a more important driver for hydrochorous seed transport than the flow of water. This sheds a new light on hydrochory and has important consequences for the management of otherwise fragmented wetland remnants.  相似文献   

4.

Aims

Rivers are important corridors for the movement, migration and dispersal of aquatic organisms, including seeds from riparian plants. Although tropical dry forests (TDF) are among the most extensive and floristically rich ecosystems of tropical habitats, and the most globally endangered ecosystem, less attention has been given to riparian corridors within this ecosystem. Although most TDFs manifest peak seed dispersal during dry seasons, we hypothesized that riparian corridors may show a dispersal peak during the rainy season, due to an anticipated ‘sweep or drag effect’, resulting from river overflow and bank erosion. Our main aims were to investigate whether there were any differences in the seed communities transported by the river to sites in rainy as opposed to dry seasons, and to evaluate any possible relationship between the riparian seed community and river flow.

Location

Amacuzac River, drainage of the Balsas basin, State of Morelos, Mexico.

Methods

To evaluate the above assumption, we associated Amacuzac River flow with the number of species and seeds dispersed by water. We also characterized and evaluated differences between seed communities transported by the river during the rainy and dry seasons, and between four different sites located along the river. We used univariate and ordination NMDS techniques to evaluate patterns between seasons at the community level.

Results

Forty‐five plant species were identified from 909 seeds collected from the river. The composition of riparian seed communities was markedly different between seasons but not between sites. Seed abundances were significantly higher in the rainy than in the dry season and varied between sites. Seed species diversity in the river (H’ = 1.6–1.9) showed no significant differences between seasons or sites, but species assemblages and dominance varied according to season. Ordination techniques and subsequent fitting analyses showed that seed species composition was positively associated with river flow.

Conclusions

Seed dispersal patterns generated by rivers are significant mechanisms for structuring the composition and distribution of the riparian plant community in Mexican TDF. Varying species assemblages and seed abundance dispersed by the river throughout the year is a relevant and until now unknown consequence that may affect the dynamics and composition of riparian plant communities in this region. This study initiative will promote new avenues of research regarding plant establishment and succession.  相似文献   

5.
Early studies of primates have demonstrated that many species rely heavily on fruit, and that primates constitute a large component of the frugivore biomass in tropical forests. Consequently, primates have long been thought to be important seed dispersers. It is only recently that studies have been conducted that have illustrated the complex nature of the interactions between fruit-eating primates and their food trees. Such studies have raised questions as to the causes and conse-quences of the intriguing differences between primate communities, the importance of other animals in the interactions (such as dung beetles and rodents that secon-darily disperse seeds), how primate-plant interactions evolve, and the significance of primates in forest regeneration and conservation. Since subsistence and com-mercial hunting of primates has heavily impacted frugivore communities, but left the physical structure of the forest relatively unaltered, studies of primate seed dispersal have important implications for the future of forests where seed dispersers have declined or disappeared.  相似文献   

6.
7.
8.
9.
10.
The initial spatial pattern of seed deposition influences plant population and community structure, particularly when that pattern persists through recruitment. In a vertebrate‐dispersed rain forest tree, Virola calophylla, we found that spatially aggregated seed deposition strongly influenced the spatial structure of later stages. Seed dispersion was clumped, and seed densities were highest underneath V. calophylla females and the sleeping sites of spider monkeys (Ateles paniscus), the key dispersal agent. Although these site types had the lowest per capita seed‐to‐seedling survival, they had the highest seedling/sapling densities. Conversely, seed and seedling/sapling densities were lowest, and seed survival was highest, at sites of diurnal seed dispersal by spider monkeys. Negative density‐dependent and positive distance‐dependent seed survival thinned seed clumps. Nonetheless, the clumped dispersion at sleeping and parental sites persisted to the seedling/sapling stage because differences in seed deposition were large enough to offset differences in seed survival among these site types.  相似文献   

11.
SUMMARY 1. Rivers are linear ecosystems across landscapes with an effective transport of organisms, sediment and organic matter. Dispersal is studied mostly during single events and for single species, and there is little knowledge on how the drift of plant litter and propagules varies within and between years for entire communities.
2. We used floating traps for collecting waterborne plant litter and propagules in a small boreal river over 2 years. We installed the traps at four different locations along the river, and emptied them at least once a week during the ice-free season. We analysed propagule content by sorting and identifying species and through germination tests on bare soil.
3. In total, we recorded at least 54 taxa in the samples, and the highest density recorded in one sample was 5000 propagules per 100 g litter (dry weight). Large temporal variations in litter and propagule transport were revealed, both within and between years.
4. The longitudinal pattern was consistent between years, with an increasing mass of litter and number of propagule taxa downstream. The results highlight the importance of the temporal and longitudinal dimensions in river management.  相似文献   

12.
13.
Mistletoes are dispersed primarily by frugivorous birds and have highly aggregated distributions at multiple scales. Mistletoe specialist frugivores have been found to intensify infections within infected hosts and stands, and this is considered the most likely mechanism underlying clumped mistletoe distributions at these scales. How these patchy infections first develop and whether seed dispersers also contribute to aggregated mistletoe distributions at landscape and regional scales have not been evaluated. Here we predict the mistletoe seed shadow of a dietary generalist (spiny‐cheeked honeyeater Acanthagenys rufogularis Aves: Meliphagidae), by combining our observations of movements via radio telemetry with previous data on gut passage times to estimate seed dispersal curves for individual birds. There was considerable variation in movements and inferred seed dispersal between individuals, with non‐breeding birds predicted to regularly transport Amyema quandang (Santalales: Loranthaceae) seeds up to 700 m; well beyond the boundaries of an existing mistletoe infection. As the first work to consider explicitly the distance component of mistletoe seed dispersal by dietary generalists, this study poses further questions about the relative seed dispersal roles of dietary generalists and mistletoe specialists. Moreover, our findings highlight considerable intraspecific variation in movement and foraging behaviour, suggesting gender and reproductive status of birds should be considered explicitly when quantifying seed dispersal services.  相似文献   

14.
王静  闫巧玲 《生态学杂志》2017,28(5):1716-1726
干扰在森林生态系统中普遍存在,并影响森林的更新和演替.动物传播种子是种子更新的必经阶段,其对森林干扰的响应在一定程度上能够预测未来的森林群落组成和结构变化,对于明确森林演替方向具有重要意义.本文论述了森林干扰对动物传播种子有效性(包括动物传播种子的数量和质量)影响研究的生态学意义,全面揭示了自然干扰(火干扰、林窗干扰等)和人为干扰(生境破碎化、狩猎、采伐等)对动物传播种子数量、传播距离以及传播后幼苗更新影响的研究进展,指出干扰通过影响动物种群动态,进而造成动物传播种子数量发生了改变,动物传播种子的距离对干扰的响应基本表现出轻微负相关;干扰对传播后幼苗更新的影响结果因干扰类型的不同而复杂多变,干扰迹地环境因子的变化也影响着传播后的种子萌发和幼苗更新.干扰对动物传播种子有效性影响研究中存在的问题,主要表现为火干扰迹地恢复过程、增益性的干扰(如抚育、间伐、林窗)等对种子传播有效性影响研究的匮乏,以及忽略了温带森林内的干扰对动物传播种子的影响等.今后,应开展干扰对种子传播有效性的长期研究;对于干扰多发地带的森林,应高度重视增益性干扰影响动物传播植物种子的研究.  相似文献   

15.
胡杨种子散布的时空分布格局   总被引:10,自引:4,他引:10  
以额济纳胡杨为研究对象,对种子雨的散布时间、强度、散布距离以及种子雨和空气湿度、风之间的关系进行了研究。胡杨种子雨可以分为初始期、高峰期和消退期3个阶段,大部分的种子集中在高峰期落下。种子的散布主要受湿度和风的影响。湿度对种子雨的强度起主要作用,在一天之中,种子在湿度较低的中午和下午集中散落。应用一元线性回归模型对种子雨强度和相对湿度进行分析后表明二者之间存在显著的负相关关系。对种子的散播距离进行研究后发现,大部分种子落在母树附近,少部分种子能够进行长距离传播。风对种子的传播的方向和距离起决定性的作用,不同方向上的种子传播距离和强度相差很大。在顺风方向上,种子的传播距离最远,所有的长距离传播现象几乎都发生在这一方向上;而在主风向的垂直方向和逆风方向上,种子的散布距离较小,很少有种子能够进行长距离传播。对风的观测表明中午后和下午初的风力较强,而此时种子雨强度又最大,有利风力条件和高种子雨强度出现的同步性可能是促进胡杨种子进行长距离传播最有效的生物控制机制。由于胡杨种子在自然条件下的存活时间非常短暂,所以研究中不同胡杨母树林间种子散播时间的差异可能是胡杨种群内部为适应不同洪水期所表现出的风险分摊机制所造成的。  相似文献   

16.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

17.
In this paper, we present results on germination patterns of the seed dispersal system of an endemic Macaronesian plant (Rubia fruticosa). Seeds from this plant are mainly dispersed by endemic lizards and native warblers; therefore, we included three different treatments: control seeds, seeds extracted from lizards and seeds found in warbler droppings. Seeds from the same pool of every treatment were germinated in two different seasons, one in autumn, coinciding with the arrival of the first rains, and another in spring, coinciding with the arrival of the dry season. A clear differential pattern of germination success was observed between the two seasons. Seeds planted in autumn achieved a higher percentage of germination than those sown in spring in all treatments. The great robustness of these results seems to indicate that germination timing is strongly selected in R. fruticosa and this evolutionary trend probably extends to other vascular plants growing in xeric coastal environments of the Macaronesian islands.  相似文献   

18.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

19.
Cistus species are obligate seeding, early colonizers that follow disturbance, particularly fire, in Mediterranean ecosystems. We studied seed release, seed dispersal and soil seed populations in stands of Cistus ladanifer and C. libanotis. Seed release started in mid- to late summer (C. ladanifer) or in early autumn (C libanotis), and continued for a very extended period: 8-10 months in C. ladanifer, and for a mean of 16 months in C. libanotis. The xerochastic capsules of both species released seeds by successive dehiscence of the locules. All capsules begin to dehisce simultaneously at the start of the seed release period, but in C. libanotis capsule fragmentation replaced dehiscence early in the seed release period. In plants of both species, seed shadows were characterized by a peak of density beneath the plant canopy and a very short tail of much lower densities, indicating that seeds are concentrated beneath mother plants when dispersed. Nevertheless, in late May, at the onset of the fire season, soil seed densities beneath plant canopies were low compared with densities expected from seed shadows, but were apparently high enough to allow recovery of the stands if a disturbance, such as fire, had taken place. Seed-eating Bruchidae in summer and granivorous ants during the seed release period were apparently the main causes of seed losses. Results suggest that in both Cistus species, the staggered seed release could constitute an efficient risk-reducing trait. The plant pool of seeds existing throughout most of the year could be a relevant component of Cistus seed banks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号