首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aims: To evaluate the inactivation of Bacillus anthracisΔSterne and Ames spores using electrochemically generated liquid‐phase chlorine dioxide (eClO2) and compare two sporulation and decontamination methods with regard to cost, safety and technical constraints. Methods and Results: Spores were prepared via agar and broth methods and subsequently inoculated and dried onto clean, autoclave‐sterilized glass coupons. Bacillus anthracis spore inactivation efficacy was evaluated using the modified three‐step method (AOAC 2008.05) and a single‐tube extraction method. Spores (7·0 ± 0·5 logs) were inactivated within 1 min at room temperature using freshly prepared eClO2. Bacillus anthracisΔSterne spores decreased in size after eClO2 treatment as measured using a Beckman Coulter Multisizer. Conclusions: eClO2 saturation of a hard surface was an effective B. anthracis sporicide. Broth sporulation and the single‐tube extraction method required less time and fewer steps, yielded a higher percentage of phase‐bright spores and showed higher spore recovery efficiency compared with AOAC 2008.05, making it more amenable to biosafety level 3 (BSL3) testing of virulent spores. Significance and Impact of the Study: Two test methods demonstrated the sporicidal efficacy of eClO2. A new single‐tube extraction test protocol for decontaminants was introduced.  相似文献   

2.

Aims

Nine commercial DNA extraction kits were evaluated for the isolation of DNA from 10‐fold serial dilutions of Bacillus anthracis spores using quantitative real‐time PCR (qPCR). The three kits determined by qPCR to yield the most sensitive and consistent detection (Epicenter MasterPure Gram Positive; MoBio PowerFood; ABI PrepSeq) were subsequently tested for their ability to isolate DNA from trace amounts of B. anthracis spores (approx. 6·5 × 101 and 1·3 × 102 CFU in 25 ml or 50 g of food sample) spiked into complex food samples including apple juice, ham, whole milk and bagged salad and recovered with immunomagnetic separation (IMS).

Methods and Results

The MasterPure kit effectively and consistently isolated DNA from low amounts of B. anthracis spores captured from food samples. Detection was achieved from apple juice, ham, whole milk and bagged salad from as few as 65 ± 14, 68 ± 8, 66 ± 4 and 52 ± 16 CFU, respectively, and IMS samples were demonstrated to be free of PCR inhibitors.

Conclusions

Detection of B. anthracis spores isolated from food by IMS differs substantially between commercial DNA extraction kits; however, sensitive results can be obtained with the MasterPure Gram Positive kit.

Significance and Impact of the Study

The extraction protocol identified herein combined with IMS is novel for B. anthracis and allows detection of low levels of B. anthracis spores from contaminated food samples.  相似文献   

3.
A Bacillus anthracis Sterne pXO1 plasmid-encoded protein designated Cot43 was found in coat extracts of purified spores. Cot43 is a tetratricopeptide repeat domain protein related to those which function as phosphatases in the sporulation phosphorelay and as regulators of competence and pathogenic factors. The synthesis of Cot43 began in the late exponential phase downstream from a sigmaA promoter (as mapped by RACE) and it was present at least until the formation of phase white endospores. There was specificity in the association of Cot43 with B. anthracis spores since Bacillus cereus producing Cot43 from a cloned gene had very little of this protein in spore coat extracts. In addition, Cot43 was synthesized by B. anthracis cells to the same extent in glucose-yeast extract and nutrient sporulation media, but was essentially absent from spores formed in the former. l-histidine is an important germinant for B. anthracis spores in macrophages, Spores produced by a mutant with a disruption of cot43 germinated in response to l-histidine both in vitro and within primary mouse macrophages earlier and more extensively than Sterne strain spores. The germination delay due to the presence of Cot43 would enhance spore survival and thus increase the chances for a successful infection. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The objective of this study was to determine the effectiveness of the spray‐drying process on the inactivation of Salmonella choleraesuis and Salmonella typhimurium spiked in liquid porcine plasma and to test the additive effect of immediate postdrying storage. Commercial spray‐dried porcine plasma was sterilized by irradiation and then reconstituted (1:9) with sterile water. Aliquots of reconstituted plasma were inoculated with either S. choleraesuis or S. typhimurium, subjected to spray‐drying at an inlet temperature of 200°C and an outlet temperature of either 71 or 80°C, and each spray‐drying temperature combinations were subjected to either 0, 30 or 60 s of residence time (RT) as a simulation of residence time typical of commercial dryers. Spray‐dried samples were stored at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days. Bacterial counts of each Salmonella spp., were completed for all samples. For both Salmonella spp., spray‐drying at both outlet temperatures reduced bacterial counts about 3 logs at RT 0 s, while there was about a 5·5 log reduction at RT 60 s. Storage of all dried samples at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days eliminate all detectable bacterial counts of both Salmonella spp.

Significance and Impact of the Study

Safety of raw materials from animal origin like spray‐dried porcine plasma (SDPP) may be a concern for the swine industry. Spray‐drying process and postdrying storage are good inactivation steps to reduce the bacterial load of Salmonella choleraesuis and Salmonella typhimurium. For both Salmonella spp., spray‐drying at 71°C or 80°C outlet temperatures reduced bacterial counts about 3 log at residence time (RT) 0 s, while there was about a 5.5 log reduction at RT 60 s. Storage of all dried samples at either 4.0 ± 3.0°C or 23.0 ± 0.3°C for 15 days was effective for eliminating detectable bacterial counts of both Salmonella spp.  相似文献   

5.
Aims: To (i) develop a protocol that would eliminate or greatly reduce sporulation within Bacillus anthracis vegetative cells, and (ii) harvest an adequate number of cells and sufficient DNA suitable for molecular methods including Riboprint® analysis and pulse field gel electrophoresis (PFGE). Methods and Results: Seven strains of B. anthracis (Ames, French B2, Heluky, Kruger, Pasteur, Sterne, and Vollum) were grown at 37, 42 and 45°C under normal air, enhanced CO2, microaerophilic, and anaerobic conditions on solid media and subcultured in two broths with and without supplements. The bacterial cells were centrifuged and washed. Slides made from the cell pellets were stained with Malachite Green and observed for the presence of spores. Cell preparations were subjected to 80°C for 30 min and processed for and analysed by either Riboprinter® or PFGE. Multiple pellets of each strain were processed, stained, placed onto solid culture media, incubated for 7 days and observed for growth. The cell preparations yielded clear and reproducible results with both molecular methods. None of the cell preparations yielded growth on the culture media. Conclusions: This method eliminated viable spores in cell preparations of B. anthracis, yet still allowed the growth of vegetative cells to provide sufficient DNA suitable for analysis by Riboprinter® and PFGE. Significance and Impact of the Study: This method will provide safe cell preparations, prevent instrument contamination, and may be useful for other aerobic and anaerobic spore‐formers.  相似文献   

6.
Aims: To obtain data on the efficacy of various liquid and foam decontamination technologies to inactivate Bacillus anthracis Ames and Bacillus subtilis spores on building and outdoor materials. Methods and Results: Spores were inoculated onto test coupons and positive control coupons of nine different materials. Six different sporicidal liquids were spray‐applied to the test coupons and remained in contact for exposure times ranging from 10 to 70 min. Following decontamination, spores were recovered from the coupons and efficacy was quantified in terms of log reduction. Conclusions: The hydrogen peroxide/peracetic acid products were the most effective, followed by decontaminants utilizing hypochlorous acid chemistry. Decontamination efficacy varied by material type. Significance and Impact of the Study: The study results may be useful in the selection of technologies to decontaminate buildings and outdoor areas in the event of contamination with B. anthracis spores. These results may also facilitate selection of decontaminant liquids for the inactivation of other spore‐forming infectious disease agents.  相似文献   

7.

Background  

Complete sequencing and annotation of the 96.2 kb Bacillus anthracis plasmid, pXO2, predicted 85 open reading frames (ORFs). Bacillus cereus and Bacillus thuringiensis isolates that ranged in genomic similarity to B. anthracis, as determined by amplified fragment length polymorphism (AFLP) analysis, were examined by PCR for the presence of sequences similar to 47 pXO2 ORFs.  相似文献   

8.
Aims: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions. Methods and Results: We prepared and studied spores from several Bacillus species, including four virulent and three attenuated strains of B. anthracis, two Bacillus species commonly used to simulate B. anthracis (Bacillus atrophaeus and Bacillus subtilis) and four close neighbours (Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis and Bacillus stearothermophilus), using identical media, protocols and instruments. We determined the wet densities of all spores by measuring their buoyant density in gradients of Percoll and their dry density in gradients of two organic solvents, one of high and the other of low chemical density. The wet density of different strains of B. anthracis fell into two different groups. One group comprised strains of B. anthracis producing spores with densities between 1·162 and 1·165 g ml?1 and the other group included strains whose spores showed higher density values between 1·174 and 1·186 g ml?1. Both Bacillus atrophaeus and B. subtilis were denser than all the B. anthracis spores studied. Interestingly and in spite of the significant differences in wet density, the dry densities of all spore species and strains were similar. In addition, we correlated the spore density with spore volume derived from measurements made by electron microscopy analysis. There was a strong correlation (R2 = 0·95) between density and volume for the spores of all strains and species studied. Conclusions: The data presented here indicate that the two commonly used simulants of B. anthracis, B. atrophaeus and B. subtilis were considerably denser and smaller than all B. anthracis spores studied and hence, these simulants could behave aerodynamically different than B. anthracis. Bacillus thuringiensis had spore density and volume within the range observed for the various strains of B. anthracis. The clear correlation between wet density and volume of the B. anthracis spores suggest that mass differences among spore strains may be because of different amounts of water contained within wet dormant spores. Significance and Impact of the Study: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefense against B. anthracis. The similarities and difference in density and volume that we found should assist in the selection of simulants that better resemble properties of B. anthracis and, thus more accurately represent the performance of countermeasures against this threat agent where spore density, size, volume, mass or related properties are relevant.  相似文献   

9.
Bacillus anthracis, a spore-forming gram-positive bacterium, causes anthrax. The external surface of the exosporium is coated with glycosylated proteins. The sugar additions are capped with the unique monosaccharide anthrose. The West African Group (WAG) B. anthracis have mutations rendering them anthrose deficient. Through genome sequencing, we identified 2 different large chromosomal deletions within the anthrose biosynthetic operon of B. anthracis strains from Chile and Poland. In silico analysis identified an anthrose-deficient strain in the anthrax outbreak among European heroin users. Anthrose-deficient strains are no longer restricted to West Africa so the role of anthrose in physiology and pathogenesis was investigated in B. anthracis Sterne. Loss of anthrose delayed spore germination and enhanced sporulation. Spores without anthrose were phagocytized at higher rates than spores with anthrose, indicating that anthrose may serve an antiphagocytic function on the spore surface. The anthrose mutant had half the LD50 and decreased time to death (TTD) of wild type and complement B. anthracis Sterne in the A/J mouse model. Following infection, anthrose mutant bacteria were more abundant in the spleen, indicating enhanced dissemination of Sterne anthrose mutant. At low sample sizes in the A/J mouse model, the mortality of ΔantC-infected mice challenged by intranasal or subcutaneous routes was 20% greater than wild type. Competitive index (CI) studies indicated that spores without anthrose disseminated to organs more extensively than a complemented mutant. Death process modeling using mouse mortality dynamics suggested that larger sample sizes would lead to significantly higher deaths in anthrose-negative infected animals. The model was tested by infecting Galleria mellonella with spores and confirmed the anthrose mutant was significantly more lethal. Vaccination studies in the A/J mouse model showed that the human vaccine protected against high-dose challenges of the nonencapsulated Sterne-based anthrose mutant. This work begins to identify the physiologic and pathogenic consequences of convergent anthrose mutations in B. anthracis.

A study of the spontaneous loss of the spore coat monosaccharide anthrose suggests that convergent evolution in several anthrax strains towards increased pathogenicity could exacerbate global human and animal anthrax disease.  相似文献   

10.
Spores of Bacillus anthracis are known to be extremely resistant to heat treatment, irradiation, desiccation, and disinfectants. To determine inactivation kinetics of spores by high pressure, B. anthracis spores of a Sterne strain-derived mutant deficient in the production of the toxin components (strain RP42) were exposed to pressures ranging from 280 to 500 MPa for 10 min to 6 h, combined with temperatures ranging from 20 to 75°C. The combination of heat and pressure resulted in complete destruction of B. anthracis spores, with a D value (exposure time for 90% inactivation of the spore population) of approximately 4 min after pressurization at 500 MPa and 75°C, compared to 160 min at 500 MPa and 20°C and 348 min at atmospheric pressure (0.1 MPa) and 75°C. The use of high pressure for spore inactivation represents a considerable improvement over other available methods of spore inactivation and could be of interest for antigenic spore preparation.  相似文献   

11.

Background  

Previous reports of site-directed deletion analysis on gamma (γ)-phage lysin protein (PlyG) have demonstrated that removal of a short amino acid sequence in the C-terminal region encompassing a 10-amino acid motif (190LKMTADFILQ199) abrogates its binding activity specific to the cell wall of Bacillus anthracis. Whether short synthetic peptides representing the10-amino acid PlyG putative binding motif flanked by surrounding N- and C-terminal residues also selectively bind to the bacterial cell wall has not been evaluated. If such peptides do demonstrate selective binding to the cell wall, they could serve as bio-probes towards developing detection technologies for B. anthracis. Furthermore, by using B. anthracis (Sterne, 34F2), an animal vaccine and B. cereus-4342, a γ-phage susceptible rare strain as surrogates of B. anthracis, development of proof-of-concepts for B. anthracis are feasible.  相似文献   

12.

Background  

Bacillus anthracis, Bacillus thuringiensis and Bacillus cereus are closely related members of the B. cereus-group of bacilli. Suppressive subtractive hybridization (SSH) was used to identify specific chromosomal sequences unique to B. anthracis.  相似文献   

13.
Real-time polymerase chain reaction (real-time PCR) is a laboratory technique based on PCR. This technique is able to detect sequence-specific PCR products as they accumulate in “real time” during the PCR amplification, and also to quantify the number of substrates present in the initial PCR mixture before amplification begins. In the present study, real-time PCR assay was employed for rapid and real-time detection of Bacillus anthracis spores spiked in 0.1 g of soil and talcum powder ranging from 5 to 107 spores. DNA was isolated from spiked soil and talcum powder, using PBS containing 1 % Triton-X-100, followed by heat treatment. The isolated DNA was used as template for real-time PCR and PCR. Real-time PCR amplification was obtained in 60 min under the annealing condition at 60°C by employing primers targeting the pag gene of B. anthracis. In the present study, the detection limit of real-time PCR assay in soil was 103 spores and102 spores in talcum powder, respectively, whereas PCR could detect 104 spores in soil and 103 spores in talcum powder, respectively.  相似文献   

14.
Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280–330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h. Received: 13 December 2000/Accepted: 19 January 2001  相似文献   

15.
Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.  相似文献   

16.

Aims

To determine the fate of Escherichia coli on vegetables that were processed through commercial wash treatments and stored under simulated retail conditions at 4°C or wholesale at fluctuating ambient temperatures (0–25°C, dependent on season).

Methods and Results

Bovine slurry that was naturally contaminated with E. coli O145 was applied without dilution or diluted 1:10 using borehole water to growing potatoes, leeks or carrots. Manure was applied 1 week prior to harvest to simulate a near‐harvest contamination event by manure deposition or an application of contaminated water to simulate a flooding event or irrigation from a contaminated water source. At harvest, crops were contaminated at up to 2 log cfu g?1. Washing transferred E. coli into the water of a flotation tank used for potato washing and did not completely remove all traces of contamination from the crop. Manure‐contaminated potatoes were observed to contain 0·72 cfu E. coli O145 g?1 after processing and retail storage. Manure‐contaminated leeks harboured 0·73–1·55 cfu E. coli O145 g?1 after washing and storage. There was no cross‐contamination when leeks were spray washed. Washing in an abrasive drum resulted in less than perfect decontamination for manure‐contaminated carrots. There were five post‐distribution isolations from carrots irrigated with contaminated water 24 h prior to harvest.

Conclusions

Standard commercial washing and distribution conditions may be insufficient to reliably control human pathogenic E. coli on fresh produce.

Significance and Impact

Previous speculation that the cause of a UK foodborne disease outbreak was soil from imperfectly cleaned vegetables is plausible.  相似文献   

17.
AcT (perhydrolase) containing paint composites were prepared leading to broad-spectrum decontamination. AcT was immobilized onto multi-walled carbon nanotubes (MWNTs) and then incorporated into latex-based paints to form catalytic coatings. These AcT-based paint composites showed a 6-log reduction in the viability of spores of Bacillus cereus and Bacillus anthracis (Sterne) within 60 min. The paint composites also showed >4-log reduction in the titer of influenza virus (X-31) within 10 min (initially challenged with 107 PFU/mL). AcT-based paint composites were also tested using various perhydrolase acyl donor substrates, including propylene glycol diacetate (PGD), glyceryl triacetate, and ethyl acetate, with PGD observed to be the best among the substrates tested for generation of peracetic acid and killing of bacillus spores. The operational stability of paint composites was also studied at different relative humidities and temperatures to simulate real-life operation.  相似文献   

18.
The behavior of Bacillus anthracis Sterne spores in sterile raw ground beef was measured at storage temperatures of 2 to 70°C, encompassing both bacterial growth and death. B. anthracis Sterne was weakly inactivated (−0.003 to −0.014 log10 CFU/h) at storage temperatures of 2 to 16°C and at temperatures greater than and equal to 45°C. Growth was observed from 17 to 44°C. At these intermediate temperatures, B. anthracis Sterne displayed growth patterns with lag, growth, and stationary phases. The lag phase duration decreased with increasing temperature and ranged from approximately 3 to 53 h. The growth rate increased with increasing temperature from 0.011 to 0.496 log10 CFU/h. Maximum population densities (MPDs) ranged from 5.9 to 7.9 log10 CFU/g. In addition, the fate of B. anthracis Ames K0610 was measured at 10, 15, 25, 30, 35, 40, and 70°C to compare its behavior with that of Sterne. There were no significant differences between the Ames and Sterne strains for both growth rate and lag time. However, the Ames strain displayed an MPD that was 1.0 to 1.6 times higher than that of the Sterne strain at 30, 35, and 40°C. Ames K0610 spores were rapidly inactivated at temperatures greater than or equal to 45°C. The inability of B. anthracis to grow between 2 and 16°C, a relatively low growth rate, and inactivation at elevated temperatures would likely reduce the risk for recommended ground-beef handling and preparation procedures.  相似文献   

19.

Background  

During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germination of spores within the culture medium.  相似文献   

20.
Aims: To develop a rapid and simple system for detection of Bacillus anthracis using a loop‐mediated isothermal amplification (LAMP) method and determine the suitability of LAMP for rapid identification of B. anthracis infection. Methods and Results: A specific LAMP assay targeting unique gene sequences in the bacterial chromosome and two virulence plasmids, pXO1 and pXO2, was designed. With this assay, it was possible to detect more than 10 fg of bacterial DNA per reaction and obtain results within 30–40 min under isothermal conditions at 63°C. No cross‐reactivity was observed among Bacillus cereus group and other Bacillus species. Furthermore, in tests using blood specimens from mice inoculated intranasally with B. anthracis spores, the sensitivity of the LAMP assay following DNA extraction methods using a Qiagen DNeasy kit or boiling protocol was examined. Samples prepared by both methods showed almost equivalent sensitivities in LAMP assay. The detection limit was 3·6 CFU per test. Conclusions: The LAMP assay is a simple, rapid and sensitive method for detecting B. anthracis. Significance and Impact of the Study: The LAMP assay combined with boiling extraction could be used as a simple diagnostic method for identification of B. anthracis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号