首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Objective: This study was designed to examine the effect of peroxisome proliferator‐activated receptor‐α (PPAR‐α) ligands on the inflammatory changes induced by the interaction between adipocytes and macrophages in obese adipose tissue. Methods and Procedures: PPAR‐α ligands (Wy‐14,643 and fenofibrate) were added to 3T3‐L1 adipocytes, RAW264 macrophages, or co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages in vitro, and monocyte chemoattractant protein‐1 (MCP‐1) and tumor necrosis factor‐α (TNF‐α) mRNA expression and secretion were examined. PPAR‐α ligands were administered to genetically obese ob/ob mice for 2 weeks. Moreover, the effect of PPAR‐α ligands was also evaluated in the adipose tissue explants and peritoneal macrophages obtained from PPAR‐α‐deficient mice. Results: In the co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages, PPAR‐α ligands reduced MCP‐1 and TNF‐α mRNA expression and secretion in vitro relative to vehicle‐treated group. The anti‐inflammatory effect of Wy‐14,643 was observed in adipocytes treated with macrophage‐conditioned media or mouse recombinant TNF‐α and in macrophages treated with adipocyte‐conditioned media or palmitate. Systemic administration of PPAR‐α ligands inhibited the inflammatory changes in adipose tissue from ob/ob mice. Wy‐14,643 also exerted an anti‐inflammatory effect in the adipose tissue explants but not in peritoneal macrophages obtained from PPAR‐α‐deficient mice. Discussion: This study provides evidence for the anti‐inflammatory effect of PPAR‐α ligands in the interaction between adipocytes and macrophages in obese adipose tissue, thereby improving the dysregulation of adipocytokine production and obesity‐related metabolic syndrome.  相似文献   

2.
This experimental study was designed to clarify the relationship between cardiomyocyte apoptosis and tumour necrosis factor‐alpha (TNF‐α) expression, and confirm the effect of TNF‐α on cardiac dysfunction after coronary microembolization (CME) in mini‐pigs. Nineteen mini‐pigs were divided into three groups: sham‐operation group (n = 5), CME group (n = 7) and adalimumab pre‐treatment group (n = 7; TNF‐α antibody, 2 mg/kg intracoronary injection before CME). Magnetic resonance imaging (3.0‐T) was performed at baseline, 6th hour and 1 week after procedure. Cardiomyocyte apoptosis was detected by cardiac‐TUNEL staining, and caspase‐3 and caspase‐8 were detected by RT‐PCR and immunohistochemistry. Furthermore, serum TNF‐α, IL‐6 and troponin T were analysed, while myocardial expressions of TNF‐α and IL‐6 were detected. Both TNF‐α expression (serum level and myocardial expression) and average number of apoptotic cardiomyocyte nuclei were significantly increased in CME group compared with the sham‐operation group. Six hours after CME, left ventricular end‐systolic volume (LVESV) was increased and the left ventricular ejection fraction (LVEF) was decreased in CME group. Pre‐treatment with adalimumab not only significantly improved LVEF after CME (6th hour: 54.9 ± 2.3% versus 50.4 ± 3.9%, P = 0.036; 1 week: 56.7 ± 4.2% versus 52.7 ± 2.9%, P = 0.041), but also suppressed cardiomyocyte apoptosis and the expression of caspase‐3 and caspase‐8. Meanwhile, the average number of apoptotic cardiomyocytes nuclei was inversely correlated with LVEF (r = ?0.535, P = 0.022). TNF‐α‐induced cardiomyocyte apoptosis is likely involved in cardiac dysfunction after CME. TNF‐α antibody therapy suppresses cardiomyocyte apoptosis and improves early cardiac function after CME.  相似文献   

3.
Objective: Abdominal obesity is associated with a fasting proinflammatory condition. However, not much is known of the potential variations in circulating inflammatory markers after food intake. The purpose of the present study was to examine postprandial changes in plasma tumor necrosis factor (TNF)‐α, interleukin (IL)‐6, and C‐reactive protein (CRP) concentrations in men and their potential associations with fat distribution and metabolic profile variables. Research Methods and Procedures: Thirty‐eight men were given a high‐fat meal in the morning after an overnight fast, and TNF‐α, IL‐6, and CRP levels were measured in plasma at 0, 4, and 8 hours after the meal. Physical and metabolic profiles were also assessed for each participant. Results: We observed a substantial increase in circulating IL‐6 levels (p < 0.0001) after the meal. Although postprandial variations in circulating TNF‐α levels across time failed to reach statistical significance (p = 0.02), we noted a significant decrease in plasma TNF‐α concentrations 4 hours (?10%, p < 0.001 vs. 0 hours) after food intake. Plasma CRP levels were not affected by the fat load. We also noted that insulin‐sensitive individuals displayed a less pronounced inflammatory response after food intake than insulin‐resistant subjects. Discussion: Results of the present study show that consumption of a high‐fat meal leads to an increase in plasma IL‐6 concentrations and transient decrease in circulating TNF‐α levels in overweight men. Our results suggest a possible role of insulin resistance in the modulation of the postprandial inflammatory response, which could, in turn, contribute to worsen the state of insulin resistance.  相似文献   

4.
Objective: Low‐molecular weight chromium compounds, such as chromium picolinate [Cr(pic)3], improve insulin sensitivity, although toxicity is a concern. We synthesized a novel chromium complex, chromium (d ‐phenylalanine)3 [Cr(d ‐phe)3], in an attempt to improve insulin sensitivity with reduced toxicity. The aim of this study was to compare the two chromium compounds on cardiac contractile function in ob/ob obese mice. Research Methods and Procedures: C57BL lean and ob/ob obese mice were randomly divided into three groups: H2O, Cr(d ‐phe)3, or Cr(pic)3 (45 µg/kg per day orally for 6 months). Results: The glucose tolerance test displayed improved glucose clearance by Cr(d ‐phe)3 but not Cr(pic)3. Myocytes from ob/ob mice exhibited depressed peak shortening (PS) and maximal velocity of shortening/relengthening (±dL/dt), prolonged time‐to‐PS and time‐to‐90% relengthening (TR90), reduced electrically stimulated rise in intracellular Ca2+ (Δfura‐2 fluorescence intensity), and slowed intracellular Ca2+ decay. Although a 3‐month Cr(d ‐phe)3 treatment for a separate group of ob/ob and lean 2‐month‐old mice only rectified reduced ±dL/dt in ob/ob mice, all mechanical and intracellular Ca2+ abnormalities were significantly attenuated or ablated by 6 months of Cr(d ‐phe)3 but not Cr(pic)3 treatment (except TR90). Sarco(endo)plasmic reticulum Ca2+ ATPase activity and Na+‐Ca2+ exchanger expression were depressed in ob/ob mice, which were reversed by both Cr(d ‐phe)3 and Cr(pic)3, with a more pronounced effect from Cr(d ‐phe)3. Cr(d ‐phe)3 corrected reduced insulin‐stimulated glucose uptake and improved basal phosphorylation of Akt and insulin receptor, as well as insulin‐stimulated phosphorylation of Akt and insulin receptor in ob/ob myocytes. Heart homogenates from ob/ob mice had enhanced oxidative stress and protein carbonyl formation compared with the lean group, which were attenuated by both Cr(d ‐phe)3 and Cr(pic)3. Discussion: Our data suggest that the new Cr(d ‐phe)3 compound possesses better cardio‐protective and insulin‐sensitizing properties against obesity.  相似文献   

5.
Aims: To estimate the efficacy of specific egg yolk immunoglobulin (IgY) for the treatment of lipopolysaccharide (LPS)‐induced endotoxemia using a mouse model. Methods and Results: Specific IgY was obtained from the yolk of hens immunized with formaldehyde‐killed Escherichia coli O111 and showed a high binding activity to LPS when subjected to an ELISA. Endotoxemia was induced in mice by intraperitoneal injection of LPS at a dose of 20 mg kg?1 for measuring survival rate and 10 mg kg?1 for cytokine measurement. The survival rate of mice treated with 200 mg kg?1 specific IgY or 5 mg kg?1 dexamethasone was 70% while none of the mice in the normal saline–treated group survived more than 7 days. Specific IgY significantly (P < 0·05) decreased tumour necrosis factor‐α (TNF‐α) level and increased interleukin‐10 (IL‐10) level in the serum of endotoxemia mice. Specific IgY had less of an effect on TNF‐α than dexamthasone, while its effect on increasing IL‐10 was stronger than dexamethasone. Haematoxylin and eosin–stained sections indicated that IgY attenuated the damage to the lung and liver observed in mice with endotoxemia. Conclusions: The specific IgY increased the survival rate of mice with endotoxemia induced by LPS, down‐regulated TNF‐α and up‐regulated IL‐10 in serum and attenuated the extent of damage to the lung and liver. Significance and Impact of the Study: The specific IgY has potential for the treatment of LPS‐induced endotoxemia.  相似文献   

6.
Phenotypically different osteoclasts may be generated from different subsets of precursors. To what extent the formation of these osteoclasts is influenced or mediated by the inflammatory cytokine TNF‐α, is unknown and was investigated in this study. The osteoclast precursors early blasts (CD31hiLy‐6C?), myeloid blasts (CD31+Ly‐6C+), and monocytes (CD31?Ly‐6Chi) were sorted from mouse bone marrow using flow cytometry and cultured with M‐CSF and RANKL, with or without TNF‐α. Surprisingly, TNF‐α prevented the differentiation of TRAcP+ osteoclasts generated from monocytes on plastic; an effect not seen with early blasts and myeloid blasts. This inhibitory effect could not be prevented by other cytokines such as IL‐1β or IL‐6. When monocytes were pre‐cultured with M‐CSF and RANKL followed by exposure to TNF‐α, a stimulatory effect was found. TNF‐α also stimulated monocytes’ osteoclastogenesis when the cells were seeded on bone. Gene expression analysis showed that when TNF‐α was added to monocytes cultured on plastic, RANK, NFATc1, and TRAcP were significantly down‐regulated while TNF‐αR1 and TNF‐αR2 were up‐regulated. FACS analysis showed a decreased uptake of fluorescently labeled RANKL in monocyte cultures in the presence of TNF‐α, indicating an altered ratio of bound‐RANK/unbound‐RANK. Our findings suggest a diverse role of TNF‐α on monocytes’ osteoclastogenesis: it affects the RANK‐signaling pathway therefore inhibits osteoclastogenesis when added at the onset of monocyte culturing. This can be prevented when monocytes were pre‐cultured with M‐CSF and RANKL, which ensures the binding of RANKL to RANK. This could be a mechanism to prevent unfavorable monocyte‐derived osteoclast formation away from the bone.
  相似文献   

7.
8.
Objective: ob/ob mice have increased sensitivity to many of leptin's effects. The primary objective of this experiment was to determine whether ob/ob mice demonstrated increased sensitivity to leptin‐induced adipose tissue apoptosis. Research Methods and Procedures: Fifteen‐week‐old female ob/ob and Ob/? mice received 0 (saline), 2.5, or 10 μg/d leptin for 14 days through subcutaneous (sc) osmotic minipumps. Food intake (FI), body temperature, physical activity, and body weight were measured daily. Body composition and weights and adipose tissue apoptosis (percentage DNA fragmentation) of inguinal, parametrial, and retroperitoneal fat pads were determined at the end of the study. Results: FI decreases were more pronounced in ob/ob. Leptin (10 μg/d) decreased total FI 71% in ob/ob and 34% in Ob/? (p < 0.05). Body weight was decreased by both doses of leptin in ob/ob (p < 0.01) but was unchanged in Ob/?. Leptin increased body temperature in ob/ob but not in Ob/?. Physical activity was increased 400% by 10 μg/d leptin in ob/ob (p < 0.01) but decreased 13% in Ob/? (p < 0.01). Body fat content of ob/ob was reduced by both leptin doses, whereas only 10 μg/d leptin decreased body fat in Ob/?. Fat pad weights were decreased similarly by leptin in both genotypes. However, apoptosis was increased by leptin in all three fat pads in ob/ob, whereas Ob/? showed significant increases only in retroperitoneal. Discussion: ob/ob mice had greater overall sensitivity to leptin. Although ob/ob mice appeared to be more sensitive than Ob/? mice to leptin‐induced adipose tissue apoptosis, there were differences among adipose depots in responsiveness to leptin‐induced apoptosis.  相似文献   

9.
Objective: Elevated levels of tumor necrosis factor‐α (TNF‐α) protein and mRNA have been reported in adipose tissue from obese humans and rodents. However, TNF‐α has catabolic and antiadipogenic effects on adipocytes. Addressing this paradox, we tested the hypothesis that paracrine levels of TNF‐α, alone or together with insulin‐like growth factor‐I (IGF‐I), support preadipocyte development. Research Methods and Procedures: Cultured stromal‐vascular cells from rat inguinal fat depots were exposed to serum‐free media containing insulin and 0.2 nM TNF‐α, 2.0 nM TNF‐α, or 0.2 nM TNF‐α + 1.0 nM IGF‐I at different times during 7 days of culture. Results: TNF‐α inhibited adipocyte differentiation as indicated by a reduction in both immunocytochemical reactivity for the preadipocyte‐specific antigen (AD3; early differentiation marker) and glycerol‐3‐phosphate dehydrogenase activity (late differentiation marker). Early exposure (Days 1 through 3 of culture) to 0.2 nM TNF‐α did not have a long term effect on inhibiting differentiation. Continuous exposure to 0.2 nM TNF‐α from Days 1 through 7 of culture resulted in a 75% increase in cell number from control. There was a synergistic effect of 0.2 nM TNF‐α + 1 nM IGF‐I on increasing cell number by Day 7 of culture to levels greater than those observed with either treatment applied alone. Discussion: These data suggest that paracrine levels (0.2 nM) of TNF‐α alone or in combination with IGF‐I may support adipose tissue development by increasing the total number of stromal‐vascular and/or uncommitted cells within the tissue. These cells may then be recruited to become preadipocytes or may alternatively serve as infrastructure to support adipose tissue growth.  相似文献   

10.
Objective: Recent studies suggested macrophages were integrated in adipose tissues, interacting with adipocytes, thereby exacerbating inflammatory responses. Persistent low‐grade infection by gram‐negative bacteria appears to promote atherogenesis. We hypothesized a ligand for toll‐like receptor 4 (TLR4), bacterial lipopolysaccharide (LPS), would further exaggerate macrophage‐adipocyte interaction. Research Methods and Procedures: RAW264.7 macrophage cell line and differentiated 3T3‐L1 preadipocytes were co‐cultured using transwell system. As a control, each cell was cultured independently. After incubation of the cells with or without Escherichia coli LPS, tumor necrosis factor (TNF)‐α and interleukin (IL)‐6 production was evaluated. Results: Co‐culture of macrophages and adipocytes with low concentration of Escherichia coli LPS (1 ng/mL) markedly up‐regulated IL‐6 production (nearly 100‐fold higher than that of adipocyte culture alone, p < 0.01), whereas TNF‐α production was not significantly influenced. This increase was partially inhibited by anti‐TNF‐α neutralizing antibody. Recombinant TNF‐α and LPS synergistically up‐regulated IL‐6 production in adipocytes. However, this increase did not reach the level of production observed in co‐cultures stimulated with LPS. Discussion: A ligand for TLR‐4 stimulates macrophages to produce TNF‐α. TNF‐α, thus produced, cooperatively up‐regulates IL‐6 production with other soluble factors secreted either from adipocytes or macrophages in these cells. Markedly up‐regulated IL‐6 would greatly influence the pathophysiology of diabetes and its vascular complications.  相似文献   

11.
Altered levels of adipokines, derived as a result of distorted adipocytes, are the major factors responsible for changing biochemical parameters in obesity that leads to the development of metabolic disorders such as insulin resistance and atherosclerosis. In our previous reports, chitosan oligosaccharides (CO) were proved to inhibit the differentiation of 3T3‐L1 adipocytes. In the present study, an attempt was made to investigate the anti‐obesity and anti‐diabetic effect of CO on ob/ob mice, by means of differential proteomic analysis of plasma. This was followed by immunoblotting, and gene expression in adipose tissue to clarify the molecular mechanism. CO treatment showed reduced diet intake (13%), body weight gain (12%), lipid (29%) and glucose levels (35%). 2‐DE results showed differential levels of five proteins namely RBP4, apoE, and apoA‐IV by >2‐fold down‐regulation and by >2‐fold of apoA‐I and glutathione peroxidase (GPx) up‐regulation after CO treatment. Immunoblotting studies of adiponectin and resistin showed amelioration in their levels in plasma. Furthermore, the results of gene expressions for adipose tissue specific TNF‐α, and IL‐6 secretary molecules were also down‐regulated by CO treatment. Gene expressions of PPARγ in adipose tissue were in good agreement with the ameliorated levels of adipokines, thereby improving the pathological state. Taken together, CO might act as a potent down‐regulator of obesity‐related gene expression in ob/ob mice that may normalize altered plasma proteins to overcome metabolic disorders of obesity.  相似文献   

12.
Mesenteric adipose tissue (MAT) inflammation is associated with non‐alcoholic fatty liver disease (NAFLD), and immune cells play pivotal roles in the inflammation of adipose tissue. Here, we investigated the roles of MAT B lymphocytes in NAFLD. Mice fed with high‐fat diet (HFD) and normal diet (ND) were killed in time gradients (4, 8 and 12 weeks). Compared with ND‐fed mice, intra‐hepatic CD45+CD19+ B lymphocytes increased after 4 weeks (P < 0.01) of HFD feeding, and lasted until the 12th week, infiltrated earlier than CD45+CD3+ T lymphocytes and CD45+F4/80+ macrophages. The mRNA expression of tumour necrosis factor (TNF)‐α, interleukin (IL)‐6 and monocyte chemotactic protein (MCP)‐1 decreased in MAT of Bnull HFD‐fed mice compared to that in wild‐type HFD‐fed mice, along with lesser macrophages. Mesenteric adipose tissue B cells from HFD‐fed mice promoted macrophage differentiation to type‐Ι macrophages and expression of pro‐inflammatory cytokines in vitro. Macrophages pre‐treated with MAT B cells from HFD‐fed mice showed elevated mRNA expression of IL‐6 and TNF‐α and declined IL‐10 levels in adipocytes compared to ND MAT B cell pre‐treated macrophages. Besides, internal near‐infrared scanning and external transwell assay showed that HFD MAT B cells migrated to the liver more than ND MAT B cells. High‐fat diet MAT B cells induced higher MCP‐1 and lower IL‐10 expression in primary hepatocytes compared to ND MAT B cells in co‐culture experiment. These data indicate that B lymphocytes infiltrate early in MAT during the development of NAFLD, which may not only promote MAT inflammation by regulating macrophages but also migrate to the liver and induce hepatocytes inflammation.  相似文献   

13.
Skeletal muscle is the source of pro‐ and anti‐inflammatory cytokines, and recently, it has been recognized as an important source of interleukin‐6 (IL‐6). Acute physical exercise is known to induce a pro‐inflammatory cytokine profile in the plasma. However, the effect of chronic physical exercise in the production of pro‐ and anti‐inflammatory cytokines by the skeletal muscle has never been examined. We assessed IL‐6, TNF‐α, IL‐1β and IL‐10 levels in the skeletal muscle of rats submitted to endurance training. Animals were randomly assigned to either a sedentary group (S, n = 7) or an endurance exercise trained group (T, n = 8). Trained rats ran on a treadmill for 5 days week?1 for 8 weeks (60% VO2max). Detection of IL‐6, TNF‐α, IL‐1β and IL‐10 protein expression was carried out by ELISA. We found decreased expression of IL‐1β, IL‐6, TNF‐α and IL‐10 (28%, 27%, 32% and 37%, respectively, p < 0.05) in the extensor digital longus (EDL) from T, when compared with S. In the soleus, IL‐1β, TNF‐α and IL‐10 protein levels were similarly decreased (34%, 42% and 50%, respectively, p < 0.05) in T in relation to S, while IL‐6 expression was not affected by the training protocol. In conclusion, exercise training induced decreased cytokine protein expression in the skeletal muscle. These data show that in healthy rats, 8‐week moderate‐intensity aerobic training down regulates skeletal muscle production of cytokines involved in the onset, maintenance and regulation of inflammation, and that the response is heterogeneous according to fibre composition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor‐alpha (TNF‐α) and interleukin 1β (IL‐1β). New in vitro testing systems are needed to evaluate efficacies of new anti‐inflammatory biological drugs, ideally in a patient‐specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti‐inflammatory drugs, spheroids were exposed to TNF‐α, IL‐1β, or to supernatant containing secretome from activated macrophages (MCM). The anti‐inflammatory efficacies of anti‐TNF‐α biologicals adalimumab, infliximab, and etanercept, and the anti‐IL‐1β agent anakinra were assessed in short‐term microspheroid and long‐term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF‐α or IL‐1β. The differences in potency of anti‐TNF‐α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short‐term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti‐TNF‐α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045–1058, 2018  相似文献   

15.
Mice with diet‐induced obesity were fed with Lactobacillus rhamnosus GG (LGG) suspended in saline or saline alone (control mice). Pulmonary mRNA expression of IFN‐γ; IFN‐α receptor 1; CD247 antigen; killer cell lectin‐like receptor subfamily K, member 1; TNF‐α; IL‐12 receptor β1 and IL‐2 receptor β, and the proportion of Lactobacillales in feces were significantly greater in the LGG group than in the control mice (P < 0.05 and P < 0.01, respectively). These results suggest that LGG alters the respiratory immunity of obese subjects through having a potent impact on intestinal immunity.  相似文献   

16.
Objective: We studied ob/ob and wild‐type (WT) mice to characterize the adipose tissues depots and other visceral organs and to establish an experimental paradigm for in vivo phenotyping. Research Methods and Procedures: An in vivo evaluation was conducted using magnetic resonance imaging and 1H‐magnetic resonance spectroscopy (1H‐MRS). We used T1‐weighted images and three‐dimensional spin echo T1‐weighted images for the morphological analysis and 1H‐MRS spectra on all body mass, as well as 1H‐MRS spectra focalized on specific lipid depots [triglyceride (TG) depots] for a molecular analysis. Results: In ob/ob mice, three‐dimensional evaluation of the trunk revealed that ~64% of the volume consists of white adipose tissue, which is 72% subcutaneous and 28% visceral. In vivo 1H‐MRS showed that 20.00 ± 6.92% in the WT group and 58.67 ± 6.65% in the ob/ob group of the total proton content is composed of TG protons. In in vivo‐localized spectra of ob/ob mice, we found a polyunsaturation degree of 0.5247 in subcutaneous depots. In the liver, we observed that 48.7% of the proton signal is due to water, whereas in the WT group, the water signal amounted to 82.8% of the total proton signal. With the sequences used, the TG amount was not detectable in the brain or kidneys. Discussion: The present study shows that several parameters can be obtained by in vivo examination of ob/ob mice by magnetic resonance imaging and 1H‐MRS and that the accumulated white adipose tissue displays low polyunsaturation degree and low hydrolipidic ratio. Relevant anatomical alterations observed in urinary and digestive apparatuses should be considered when ob/ob mice are used in experimental paradigms.  相似文献   

17.
An alarming global rise in the prevalence of obesity and its contribution to the development of chronic diseases is a serious health concern. Recently, obesity has been described as a chronic low‐grade inflammatory condition, influenced by both adipose tissue and immune cells suggesting proinflammatory cytokines may play a role in its etiology. Here we examined the effects of interleukin‐15 (IL‐15) on adipose tissue and its association with obesity. Over expression of IL‐15 (IL‐15tg) was associated with lean body condition whereas lack of IL‐15 (IL‐15?/?) results in significant increase in weight gain without altering appetite. Interestingly, there were no differences in proinflammatory cytokines such as IL‐6 and tumor necrosis factor‐α (TNF‐α) in serum between the three strains of mice. In addition, there were significant numbers of natural killer (NK) cells in fat tissues from IL‐15tg and B6 compared to IL‐15?/? mice. IL‐15 treatment results in significant weight loss in IL‐15?/? knockout and diet‐induced obese mice independent of food intake. Fat pad cross‐sections show decreased pad size with over expression of IL‐15 is due to adipocyte shrinkage. IL‐15 induces weight loss without altering food consumption by affecting lipid deposition in adipocytes. Treatment of differentiated human adipocytes with recombinant human IL‐15 protein resulted in decreased lipid deposition. In addition, obese patients had significantly lower serum IL‐15 levels when compared to normal weight individuals. These results clearly suggest that IL‐15 may be involved in adipose tissue regulation and linked to obesity.  相似文献   

18.
Tumor necrosis factor alpha (TNF‐α) is known to exacerbate ischemic brain injury; however, the mechanism is unknown. Previous studies have evaluated the effects of TNF‐α on neurons with long exposures to high doses of TNF‐α, which is not pathophysiologically relevant. We characterized the rapid effects of TNF‐α on basal respiration, ATP production, and maximal respiration using pathophysiologically relevant, post‐stroke concentrations of TNF‐α. We observed a reduction in mitochondrial function as early as 1.5 h after exposure to low doses of TNF‐α, followed by a decrease in cell viability in HT‐22 cells and primary neurons. Subsequently, we used the HT‐22 cell line to determine the mechanism by which TNF‐α causes a rapid and profound reduction in mitochondrial function. Pre‐treating with TNF‐R1 antibody, but not TNF‐R2 antibody, ameliorated the neurotoxic effects of TNF‐α, indicating that TNF‐α exerts its neurotoxic effects through TNF‐R1. We observed an increase in caspase 8 activity and a decrease in mitochondrial membrane potential after exposure to TNF‐α which resulted in a release of cytochrome c from the mitochondria into the cytosol. These novel findings indicate for the first time that an acute exposure to pathophysiologically relevant concentrations of TNF‐α has neurotoxic effects mediated by a rapid impairment of mitochondrial function.

  相似文献   


19.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   

20.
The antimicrobial activity of five samples of Taxandria fragrans essential oil was evaluated against a range of Gram‐positive (n= 26) and Gram‐negative bacteria (n= 39) and yeasts (n= 10). The majority of organisms were inhibited and/or killed at concentrations ranging from 0.06–4.0% v/v. Geometric means of MIC were lowest for oil Z (0.77% v/v), followed by oils X (0.86%), C (1.12%), A (1.23%) and B (1.24%). Despite differences in susceptibility data between oils, oils A and X did not differ when tested at 2% v/v in a time kill assay against Staphylococcus aureus. Cytotoxicity assays using peripheral blood mononuclear cells demonstrated that T. fragrans oil was cytotoxic at 0.004% v/v but not at 0.002%. Exposure to one or more of the oils at concentrations of ≤0.002% v/v resulted in a dose responsive reduction in the production of proinflammatory cytokines IL‐6 and TNF‐α, regulatory cytokine IL‐10, Th1 cytokine IFN‐γ and Th2 cytokines IL‐5 and IL‐13 by PHA stimulated mononuclear cells. Oil B inhibited the production of all cytokines except IL‐10, oil X inhibited TNF‐α, IL‐6 and IL‐10, oil A inhibited TNF‐α and IL‐6, oil C inhibited IL‐5 and IL‐6 and oil Z inhibited IL‐13 only. IL‐6 production was significantly inhibited by the most oils (A, B, C and X), followed by TNF‐α (oils A, B and X). In conclusion, T. fragrans oil showed both antimicrobial and anti‐inflammatory activity in vitro, however, the clinical relevance of this remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号