首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem® associated to blue LED (light‐emitting diode) on L929 and MDPC‐23 cell cultures, 30000 cells/cm2 were seeded in 24‐well plates for 48 h, incubated with Photogem® (10, 25 or 50 mg/l) and irradiated with an LED source (460±3 nm; 22 mW/cm2) at two energy densities (25.5 or 37.5 J/cm2). Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet's post hoc tests) and cell morphology by SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT‐induced cell death as well and estimated intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial activity (90% to 97%) for all Photogem® concentrations associated to blue LED, regardless of irradiation time. It was also demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage. PDT‐treated cells presented an altered morphology with ill‐defined limits. In both cell lines, there was a predominance of necrotic cell death and the presence of Photogem® or irradiation increased the intracellular levels of ROS. PDT caused severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological alterations and induction of necrotic cell death.  相似文献   

2.
Epidermal growth factor receptor (EGFR), a receptor often expressed in nasopharyngeal carcinoma (NPC) cells, is one of the recently identified molecular targets in cancer treatment. In the present study, the effects of combined treatment of Zn‐BC‐AM PDT with an EGFR inhibitor AG1478 were investigated. Well‐differentiated NPC HK‐1 cells were subjected to PDT with 1 µM of Zn‐BC‐AM and were irradiated at a light dose of 1 J/cm2 in the presence or absence of EGFR inhibitor AG1478. Specific protein kinase inhibitors of downstream EGFR targets were also used in the investigation. EGFR, Akt, and ERK were found constitutively activated in HK‐1 cells and the activities could be inhibited by the EGFR inhibitor AG1478. A sub‐lethal concentration of AG1478 was found to further enhance the irreversible cell damage induced by Zn‐BC‐AM PDT in HK‐1 cells. Pre‐incubation of the cells with specific inhibitors of EGFR (AG1478), PI3k/Akt (LY294002), or MEK/ERK (PD98059) before light irradiation were found to enhance Zn‐BC‐AM PDT‐induced formation of apoptotic cells. The efficacy of Zn‐BC‐AM PDT can be increased through the inhibition of EGFR/PI3K/Akt and EGFR/MEK/ERK signaling pathways in NPC cells. Combination therapy with Zn‐BC‐AM PDT and EGFR inhibitors may further be developed for the treatment of advanced NPC. J. Cell. Biochem. 108: 1356–1363, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Although having shown promising clinical outcomes, the effectiveness of 5‐aminolevulinic acid‐based photodynamic therapy (ALA‐PDT) for squamous cell carcinoma (SCC) and glioblastoma remains to be improved. The analgesic drug methadone is able to sensitize various tumors to chemotherapy. In this in vitro study, the influence of methadone to the effectiveness of ALA‐PDT for SCC (FADU) and glioblastoma (A172) was investigated on the protoporphyrin IX (PpIX) fluorescence, survival rates, apoptosis, and cell cycle phase, each with or without the presence of methadone. The production of PpIX was increased by methadone in FADU cells while it was decreased in A172 cells. The survival rates of both cell lines treated by ALA‐PDT were significantly reduced by the combination with methadone (P < .05). Methadone also significantly increased the percentage of apoptotic cells and improved the effect of ALA‐PDT on the cell cycle phase arrest in the G0/G1 phase (P < .05). This study demonstrates the potential of methadone to influence the cytotoxic effect of ALA‐PDT for both SCC and glioblastoma cell lines.   相似文献   

4.
Photodynamic therapy (PDT) for tumors is based on the tumor‐selective accumulation of a photosensitizer, protoporphyrin IX (PpIX), followed by irradiation with visible light. However, the molecular mechanism of cell death caused by PDT has not been fully elucidated. The 5‐aminolevulinic acid (ALA)‐based photodynamic action (PDA) was dependent on the accumulation of PpIX, the level of which decreased rapidly by eliminating ALA from the incubation medium in human histiocytic lymphoma U937 cells. PDA induced apoptosis characterized by lipid peroxidation, increase in Bak and Bax/Bcl‐xL, decrease in Bid, membrane depolarization, cytochrome c release, caspase‐3 activation, phosphatidylserine (PS) externalization. PDT‐induced cell death seemed to occur predominantly via apoptosis through distribution of PpIX in mitochondria. These cell death events were enhanced by ferrochelatase inhibitors. These results indicated that ALA‐based‐PDA induced apoptotic cell death through a mitochondrial pathway and that ferrochelatase inhibitors might enhanced the effect of PDT for tumors even at low concentrations of ALA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Photodynamic therapy (PDT), a photochemotherapeutic regimen used to treat several diseases, including cancer, exerts its effects mainly through induction of cell death. Using human epidermoid carcinoma A431 cells as a model, we previously showed that distinct cell death types could be triggered by protocols that selectively delivered Photofrin (a clinically approved photosensitizer) to different subcellular sites (Hsieh et al. [2003] J Cell Physiol 194: 363–375]. Here, the responses elicited by PDT in A431 cells containing intracellular organelle‐localized Photofrin were further characterized. Two prominent cell phenotypes were observed under these conditions: one characterized by perinuclear vacuole (PV) formation 2–8 h after PDT followed by cell recovery or shrinkage within 48 h, and a second characterized by typical apoptotic features appearing within 4 h after PDT. DCFDA‐sensitive reactive oxygen species formed proximal to PVs during the response to PDT, covering areas in which both endoplasmic reticulum (ER) and the Golgi complex were located. Biochemical analyses showed that Photofrin‐PDT also induced JNK activation and altered the protein secretion profile. A more detailed examination of PV formation revealed that PVs were derived from the ER. The alteration of ER structure induced by PDT was similar to that triggered by thapsigargin, an ER Ca2+‐ATPase inhibitor that perturbs Ca2+ homeostasis, suggesting a role for Ca2+ in the formation of PVs. Microtubule dynamics did not significantly affect PV formation. This study demonstrates that cells in which intracellular organelles are selectively loaded with Photofrin mount a novel response to ER stress induced by PDT. J. Cell. Biochem. 111: 821–833, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Oxidative stress‐induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat‐Atox1 and examined the roles of Tat‐Atox1 in oxidative stress‐induced hippocampal HT‐22 cell death and an ischaemic injury animal model. Tat‐Atox1 effectively transduced into HT‐22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)‐induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat‐Atox1 regulated cellular survival signalling such as p53, Bad/Bcl‐2, Akt and mitogen‐activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat‐Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat‐Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat‐Atox1 protects against oxidative stress‐induced HT‐22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat‐Atox1 has potential as a therapeutic agent for the treatment of oxidative stress‐induced ischaemic damage.  相似文献   

7.
Photodynamic therapy (PDT) with a recently developed photosensitizer Zn‐BC‐AM was found to effectively induce apoptosis in a well‐differentiated nasopharyngeal carcinoma (NPC) HK‐1 cell line. Sustained activation of p38 mitogen‐activated protein kinase (MAPK) and c‐jun N‐terminal kinase (JNK) as well as a transient increase in activation of extracellular signal‐regulated kinase (ERK) were observed immediately after Zn‐BC‐AM PDT. A commonly used p38 MAPK/JNK pharmacological inhibitor PD169316 was found to reduce PDT‐induced apoptosis of HK‐1 cells. PD169316 also prevented the loss of Bcl‐2 and Bcl‐xL in PDT‐treated HK‐1 cells. However, inhibition of JNK with SP600125 had no effect on Zn‐BC‐AM PDT‐induced apoptosis while inhibition of ERK with PD98059 or p38 MAPK with SB203580 significantly increased Zn‐BC‐AM PDT‐induced apoptosis. Further study showed that knockdown of the p38β isoform with siRNA also increased Zn‐BC‐AM PDT‐induced apoptosis, indicating that the anti‐apoptotic effect of PD169316 in PDT‐treated HK‐1 cells was probably independent of p38 MAPK or JNK activation. Taken together, the results suggest that inhibition of p38β and ERK may enhance the therapeutic efficacy of Zn‐BC‐AM PDT on NPC cells. It should be noted that data only based on the use of PD169316 should be interpreted in caution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Bcl‐2 family proteins are critical for the regulation of apoptosis, with the pro‐apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC‐a‐1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT‐induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynamin‐related protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT‐induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT‐induced cell death finally, indicating that Bax‐mediated Drp1's mitochondrial translocation is not essential for PDT‐induced cell apoptosis. On the other hand, we found that protein kinase Cδ (PKCδ), Bim L and glycogen synthase kinase 3β (GSK3β) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1‐mediated mitochondrial fission during the apoptosis caused by Photofrin‐PDT. J. Cell. Physiol. 226: 530–541, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The purpose of this study was to evaluate photobleaching of the genetically encoded photosensitizer KillerRed in tumor spheroids upon pulsed and continuous wave (CW) laser irradiation and to analyze the mechanisms of cancer cell death after the treatment. We observed the light‐dose dependent mechanism of KillerRed photobleaching over a wide range of fluence rates. Loss of fluorescence was limited to 80% at light doses of 150 J/cm2 and more. Based on the bleaching curves, six PDT regimes were applied for irradiation using CW and pulsed regimes at a power density of 160 mW/cm2 and light doses of 140 J/cm2, 170 J/cm2 and 200 J/cm2. Irradiation of KillerRed‐expressing spheroids in the pulsed mode (pulse duration 15 ns, pulse repetition rate 10 Hz) induced predominantly apoptotic cell death, while in the case of CW mode the cancer cells underwent necrosis. In general, these results improve our understanding of photobleaching mechanisms in GFP‐like proteins and show the importance of appropriate selection of treatment mode for PDT with KillerRed.

Representative fluorescence image of two KillerRed‐expressing spheroids before and immediately after CW irradiation.  相似文献   


10.
Mono (2‐ethylhexyl) phthalate (MEHP), an environmental contaminant, is known to cause many serious diseases, especially in reproductive system. However, little is known about the effect of MEHP on preimplantation embryo development. In this study, we found that the development of mouse 2‐cell embryo was blocked by 10?3 M MEHP. A significant increase in the level of reactive oxygen species (ROS) was observed in arrested 2‐cell embryo following 10?3 M MEHP treatment for 24 h. However, antioxidants, catalase (CAT), and superoxide dismutase (SOD), reduced intracellular ROS and protected MEHP‐exposed embryos from death but failed to return the arrested embryos. Further experiments demonstrated that the level of apoptosis was not altered in live arrested 2‐cell embryo and increased in dead arrested 2‐cell embryo after MEHP treatment, which implied that ROS and apoptosis were not related with 2‐cell block. During analysis of the indicators of embryonic genome activation (EGA) initiation (Hsc70, MuERV‐L, Hsp70.1, eIF‐1A, and Zscan4) and maternal‐effect genes (OCT4 and SOX2), we found that MEHP treatment could significantly decline Hsc70, MuERV‐L mRNA level and SOX2 protein level, and markedly enhance Hsp70.1, eIF‐1A, Zscan4 mRNA level, and OCT4 protein level at 2‐cell to 4‐cell stage. Supplementation of CAT and SOD did not reverse the expression tendency of EGA related genes. Collectively, this study demonstrates for the first time that MEHP‐induced 2‐cell block is mediated by the failure of EGA onset and maternal‐effect genes, not oxidative stress and apoptosis. J. Cell. Physiol. 228: 753–763, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Increasing evidence supports that activation of store‐operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5‐FU induces hepatocarcinoma cell death through regulating Ca2+‐dependent autophagy. [Ca2+]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5‐fluorouracil (5‐FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5‐FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5‐FU‐induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5‐FU‐activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5‐FU‐induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5‐FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5‐FU sensitivity for hepatocarcinoma treatment and blockade of Orai1‐mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5‐FU treatment.  相似文献   

12.
Photodynamic therapy (PDT) has emerged as a capable therapeutic modality for the treatment of cancer. PDT is a targeted cancer therapy that reportedly leads to tumor cell apoptosis and/or necrosis by facilitating the secretion of certain pro-inflammatory cytokines and expression of multiple apoptotic mediators in the tumor microenvironment. In addition, PDT also triggers oxidative stress that directs tumor cell killing and activation of inflammatory responses. However, the cellular and molecular mechanisms underlying the role of PDT in facilitating tumor cell apoptosis remain ambiguous. Here, we investigated the ability of PDT in association with hypericin (HY) to induce tumor cell apoptosis by facilitating the induction of reactive oxygen species (ROS) and secretion of Th1/Th2/Th17 cytokines in human hepatocellular liver carcinoma cell line (HepG2) cells. To discover if any apoptotic mediators were implicated in the enhancement of cell death of HY-PDT-treated tumor cells, selected gene profiling in response to HY-PDT treatment was implemented. Experimental results showed that interleukin (IL)-6 was significantly increased in all HY-PDT-treated cells, especially in 1 μg/ml HY-PDT, resulting in cell death. In addition, quantitative real-time PCR analysis revealed that the expression of apoptotic genes, such as BH3-interacting-domain death agonist (BID), cytochrome complex (CYT-C) and caspases (CASP3, 6, 7, 8 and 9) was remarkably higher in HY-PDT-treated HepG2 cells than the untreated HepG2 cells, entailing that tumor destruction of immune-mediated cell death occurs only in PDT-treated tumor cells. Hence, we showed that HY-PDT treatment induces apoptosis in HepG2 cells by facilitating cytotoxic ROS, and potentially recruits IL-6 and apoptosis mediators, providing additional hints for the existence of alternative mechanisms of anti-tumor immunity in hepatocellular carcinoma, which contribute to long-term suppression of tumor growth following PDT.  相似文献   

13.
Notechis scutatus scutatus notexin induced apoptotic death of SK‐N‐SH cells accompanied with downregulation of Bcl‐xL, upregulation of Bak, mitochondrial depolarization, and ROS generation. Upon exposure to notexin, Ca2+‐mediated JNK and p38 MAPK activation were observed in SK‐N‐SH cells. Production of ROS was a downstream event followed by Ca2+‐mediated mitochondrial alteration. Notexin‐induced cell death, mitochondrial depolarization, and ROS generation were suppressed by SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor). Moreover, phospho‐p38 MAPK and phospho‐JNK were proved to be involved in Bcl‐xL degradation, and overexpression of Bcl‐xL attenuated the cytotoxic effect of notexin. Bak upregulation was elicited by p38 MAPK‐mediated ATF‐2 activation and JNK‐mediated c‐Jun activation. Suppression of Bak upregulation by ATF‐2 siRNA or c‐Jun siRNA attenuated notexin‐evoked mitochondrial depolarization and rescued viability of notexin‐treated cells. Taken together, our data indicate that notexin‐induced apoptotic death of SK‐N‐SH cells is mediated through mitochondrial alteration triggering by Ca2+‐evoked p38 MAPK/ATF‐2 and JNK/c‐Jun signaling pathways. J. Cell. Physiol. 222:177–186, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
High fluence low‐power laser irradiation (HF‐LPLI) can induce cell apoptosis via the mitochondria/caspase‐3 pathway. Here, we further investigated the mechanism involved in the apoptotic process in human lung adenocarcinoma cells (ASTC‐a‐1) at a laser irradiation fluence of 120 J/cm2 (633 nm). Cytochrome c release was ascribed to mitochondrial permeability transition (MPT) because the release was prevented by cyclosporine (CsA), a specific inhibitor of MPT. Furthermore, mitochondrial permeability for calcein (~620 Da) was another evidence for the MPT induction under HF‐LPLI treatment. A high‐level intracellular reactive oxygen species (ROS) generation was observed after irradiation. The photodynamically produced ROS caused onset of MPT, as the ROS scavenger docosahexaenoic acid (DHA) prevented the MPT. However, CsA failed to prevented cell death induced by HF‐LPLI, indicating the existence of other signaling pathways. Following laser irradiation, Bax activation occurred after mitochondrial depolarization and cytochrome c release, indicating Bax activation was a downstream event. In the presence of CsA, Bax was still activated at the end‐stage of apoptotic process caused by HF‐LPLI, suggesting that Bax was involved in an alternative‐signaling pathway, which was independent of MPT. Under HF‐LPLI treatment, cell viabilities due to pre‐treatment with DHA, CsA, or Bax small interfering RNA (siRNA) demonstrated that the MPT signaling pathway was dominant, while Bax signaling pathway was secondary, and more importantly ROS mediated both pathways. Taken together, these results showed that HF‐LPLI induced cell apoptosis via the CsA‐sensitive MPT, which was ROS‐dependent. Furthermore, there existed a secondary signaling pathway through Bax activation. The observed link between MPT and triggering ROS could be a fundamental phenomenon in HF‐LPLI‐induced cell apoptosis. J. Cell. Physiol. 218: 603–611, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Advanced glycation end‐products (AGEs), epidermal growth factor receptor (EGFR), reactive oxygen species (ROS), and extracellular signal‐regulated kinases (ERK) are implicated in diabetic nephropathy (DN). Therefore, we asked if AGEs‐induced ERK protein phosphorylation and mitogenesis are dependent on the receptor for AGEs (RAGE)–ROS–EGFR pathway in normal rat kidney interstitial fibroblast (NRK‐49F) cells. We found that AGEs (100 µg/ml) activated EGFR and ERK1/2, which was attenuated by RAGE short‐hairpin RNA (shRNA). AGEs also increased RAGE protein and intracellular ROS levels while RAGE shRNA and N‐acetylcysteine (NAC) attenuated AGEs‐induced intracellular ROS. Hydrogen peroxide (5–25 µM) increased RAGE protein level while activating both EGFR and ERK1/2. Low‐dose hydrogen peroxide (5 µM) increased whereas high‐dose hydrogen peroxide (100 µM) decreased mitogenesis at 3 days. AGEs‐activated EGFR and ERK1/2 were attenuated by an anti‐oxidant (NAC) and an EGFR inhibitor (Iressa). Moreover, AGEs‐induced mitogenesis was attenuated by RAGE shRNA, NAC, Iressa, and an ERK1/2 inhibitor (PD98059). In conclusion, it was found that AGEs‐induced mitogenesis is dependent on the RAGE–ROS–EGFR–ERK1/2 pathway whereas AGEs‐activated ERK1/2 is dependent on the RAGE–ROS–EGFR pathway in NRK‐49F cells. J. Cell. Biochem. 109: 38–48, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Astrocytes, the most abundant glial cell population in the central nervous system (CNS), play physiological roles in neuronal activities. Oxidative insult induced by the injury to the CNS causes neural cell death through extrinsic and intrinsic pathways. This study reports that reactive oxygen species (ROS) generated by exposure to the strong oxidizing agent, hexavalent chromium (Cr(VI)) as a chemical‐induced oxidative stress model, caused astrocytes to undergo an apoptosis‐like cell death through a caspase‐3‐independent mechanism. Although activating protein‐1 (AP‐1) and NF‐κB were activated in Cr(VI)‐primed astrocytes, the inhibition of their activity failed to increase astrocytic cell survival. The results further indicated that the reduction in mitochondrial membrane potential (MMP) was accompanied by an increase in the levels of ROS in Cr(VI)‐primed astrocytes. Moreover, pretreatment of astrocytes with N‐acetylcysteine (NAC), the potent ROS scavenger, attenuated ROS production and MMP loss in Cr(VI)‐primed astrocytes, and significantly increased the survival of astrocytes, implying that the elevated ROS disrupted the mitochondrial function to result in the reduction of astrocytic cell viability. In addition, the nuclear expression of apoptosis‐inducing factor (AIF) and endonuclease G (EndoG) was observed in Cr(VI)‐primed astrocytes. Taken together, evidence shows that astrocytic cell death occurs by ROS‐induced oxidative insult through a caspase‐3‐independent apoptotic mechanism involving the loss of MMP and an increase in the nuclear levels of mitochondrial pro‐apoptosis proteins (AIF/EndoG). This mitochondria‐mediated but caspase‐3‐independent apoptotic pathway may be involved in oxidative stress‐induced astrocytic cell death in the injured CNS. J. Cell. Biochem. 107: 933–943, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   

18.
The aim of the present study is to elucidate the signaling pathway involved in death of human neuroblastoma SK‐N‐SH cells induced by Naja naja atra phospholipase A2 (PLA2). Upon exposure to PLA2, p38 MAPK activation, ERK inactivation, ROS generation, increase in intracellular Ca2+ concentration, and upregulation of Fas and FasL were found in SK‐N‐SH cells. SB202190 (p38MAPK inhibitor) suppressed upregulation of Fas and FasL. N‐Acetylcysteine (ROS scavenger) and BAPTA‐AM (Ca2+ chelator) abrogated p38 MAPK activation and upregulation of Fas and FasL expression, but restored phosphorylation of ERK. Activated ERK was found to attenuate p38 MAPK‐mediated upregulation of Fas and FasL. Deprivation of catalytic activity could not diminish PLA2‐induced cell death and Fas/FasL upregulation. Moreover, the cytotoxicity of arachidonic acid and lysophosphatidylcholine was not related to the expression of Fas and FasL. Taken together, our results indicate that PLA2‐induced cell death is, in part, elicited by upregulation of Fas and FasL, which is regulated by Ca2+‐ and ROS‐evoked p38 MAPK activation, and suggest that non‐catalytic PLA2 plays a role for the signaling pathway. J. Cell. Biochem. 106: 93–102, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
In response to pathogens, plant cells exhibit a rapid increase in the intracellular calcium concentration and a burst of reactive oxygen species (ROS). The cytosolic increase in Ca2+ and the accumulation of ROS are critical for inducing programmed cell death (PCD), but the molecular mechanism is not fully understood. We screened an Arabidopsis mutant, sad2‐5, which harbours a T‐DNA insertion in the 18th exon of the importin beta‐like gene, SAD2. The H2O2‐induced increase in the [Ca2+]cyt of the sad2‐5 mutant was greater than that of the wild type, and the sad2‐5 mutant showed clear cell death phenotypes and abnormal H2O2 accumulation under fumonisin‐B1 (FB1) treatment. CaCl2 could enhance the FB1‐induced cell death of the sad2‐5 mutant, whereas lanthanum chloride (LaCl3), a broad‐spectrum calcium channel blocker, could restore the FB1‐induced PCD phenotype of sad2‐5. The sad2‐5 fbr11‐1 double mutant exhibited the same FB1‐insensitive phenotype as fbr11‐1, which plays a critical role in novo sphingolipid synthesis, indicating that SAD2 works downstream of FBR11. These results suggest the important role of nuclear transporters in calcium‐ and ROS‐mediated PCD response as well as provide an important theoretical basis for further analysis of the molecular mechanism of SAD2 function in PCD and for improvement of the resistance of crops to adverse environments.  相似文献   

20.
Butylene fipronil (BFPN) is a phenylpyrazole insecticide, acting at the γ‐aminobutyric acid (GABA) receptor. Here, we show that BFPN inducedcytotoxicity in PC12 murinenervous cells, which lacks GABA receptor. Treatment with BFPN for 48 hours significantly enhanced G0/G1 arrest and induced apoptosis. BFPN decreased the expression of cyclin‐dependent kinase (CDK4 and CDK6) and increased P16 and cyclin D1. Simultaneously, Bcl‐2 protein was declined while Bax and cytochrome c were significantly enhanced in BFPN‐treated groups. The apoptotic enzymes caspase‐8, ‐9, and ‐3 were also activated by BFPN. Furthermore, treatment with BFPN significantly stimulated reactive oxygen species (ROS) generation, and pretreatment with antioxidant diphenyleneiodonium, substantially reduced cell death. Overall, these results suggest that BFPN is effective to induce G0/G1‐phase arrest and apoptosis in PC12 murine nervous cell. Stimulating ROS generation and activation of P16‐CDK4/6‐cyclin D1 and mitochondrial apoptotic pathway may participate in the cytotoxicity of BFPN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号