首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanosauriforms represent a diverse and globally distributed clade of neosauropod dinosaurs, but their inter‐relationships remain poorly understood. Here we redescribe Lusotitan atalaiensis from the Late Jurassic Lourinhã Formation of Portugal, a taxon previously referred to Brachiosaurus. The lectotype includes cervical, dorsal, and caudal vertebrae, and elements from the forelimb, hindlimb, and pelvic girdle. Lusotitan is a valid taxon and can be diagnosed by six autapomorphies, including the presence of elongate postzygapophyses that project well beyond the posterior margin of the neural arch in anterior‐to‐middle caudal vertebrae. A new phylogenetic analysis, focused on elucidating the evolutionary relationships of basal titanosauriforms, is presented, comprising 63 taxa scored for 279 characters. Many of these characters are heavily revised or novel to our study, and a number of ingroup taxa have never previously been incorporated into a phylogenetic analysis. We treated quantitative characters as discrete and continuous data in two parallel analyses, and explored the effect of implied weighting. Although we recovered monophyletic brachiosaurid and somphospondylan sister clades within Titanosauriformes, their compositions were affected by alternative treatments of quantitative data and, especially, by the weighting of such data. This suggests that the treatment of quantitative data is important and the wrong decisions might lead to incorrect tree topologies. In particular, the diversity of Titanosauria was greatly increased by the use of implied weights. Our results support the generic separation of the contemporaneous taxa Brachiosaurus, Giraffatitan, and Lusotitan, with the latter recovered as either a brachiosaurid or the sister taxon to Titanosauriformes. Although Janenschia was recovered as a basal macronarian, outside Titanosauria, the sympatric Australodocus provides body fossil evidence for the pre‐Cretaceous origin of titanosaurs. We recovered evidence for a sauropod with close affinities to the Chinese taxon Mamenchisaurus in the Late Jurassic Tendaguru beds of Africa, and present new information demonstrating the wider distribution of caudal pneumaticity within Titanosauria. The earliest known titanosauriform body fossils are from the late Oxfordian (Late Jurassic), although trackway evidence indicates a Middle Jurassic origin. Diversity increased throughout the Late Jurassic, and titanosauriforms did not undergo a severe extinction across the Jurassic/Cretaceous boundary, in contrast to diplodocids and non‐neosauropods. Titanosauriform diversity increased in the Barremian and Aptian–Albian as a result of radiations of derived somphospondylans and lithostrotians, respectively, but there was a severe drop (up to 40%) in species numbers at, or near, the Albian/Cenomanian boundary, representing a faunal turnover whereby basal titanosauriforms were replaced by derived titanosaurs, although this transition occurred in a spatiotemporally staggered fashion. © 2013 The Linnean Society of London  相似文献   

2.
Sauropod dinosaur phylogeny: critique and cladistic analysis   总被引:6,自引:0,他引:6  
Sauropoda is among the most diverse and widespread dinosaurlineages, having attained a near‐global distribution by the MiddleJurassic that was built on throughout the Cretaceous. These giganticherbivores are characterized by numerous skeletal specializationsthat accrued over a 140 million‐year history. This fascinating evolutionaryhistory has fuelled interest for more than a century, yet aspectsof sauropod interrelationships remain unresolved. This paper presentsa lower‐level phylogenetic analysis of Sauropoda in two parts. First,the two most comprehensive analyses of Sauropoda are critiqued toidentify points of agreement and difference and to create a coreof character data for subsequent analyses. Second, a generic‐levelphylogenetic analysis of 234 characters in 27 sauropod taxa is presentedthat identifies well supported nodes as well as areas of poorerresolution. The analysis resolves six sauropod outgroups to Neosauropoda,which comprises the large‐nostrilled clade Macronaria and the peg‐toothedclade Diplodocoidea. Diplodocoidea includes Rebbachisauridae, Dicraeosauridae,and Diplodocidae, whose monophyly and interrelationships are supportedlargely by cranial and vertebral synapomorphies. In contrast, thearrangement of macronarians, particularly those of titanosaurs,are based on a preponderance of appendicular synapomorphies. The purportedChinese clade ‘Euhelopodidae’ is shown to comprisea polyphyletic array of basal sauropods and neosauropods. The synapomorphiessupporting this topology allow more specific determination for themore than 50 fragmentary sauropod taxa not included in this analysis.Their distribution and phylogenetic affinities underscore the diversityof Titanosauria and the paucity of Late Triassic and Early Jurassicgenera. The diversification of Titanosauria during the Cretaceousand origin of the sauropod body plan duringthe Late Triassic remain frontiers for future studies. © 2002The Linnean Society of London, Zoological Journal of the LinneanSociety, 2002, 136 , 217?276.  相似文献   

3.
4.
Abstract: The sauropod dinosaur ‘Bothriospondylus’, originally named on the basis of Late Jurassic remains from England, is demonstrated to be invalid, and the characters used to diagnose it are shown to be obsolescent features which are widespread throughout Sauropoda. Material referred to this genus spans a temporal range from the Middle Jurassic until the early Late Cretaceous and has been described from five different countries, across three continents. These remains represent a wide array of sauropod groups, comprising non‐neosauropod eusauropods, a macronarian, titanosauriforms (including at least one definite brachiosaurid) and a rebbachisaurid. The type material of the Middle Jurassic ‘B. madagascariensis’ represents a derived non‐neosauropod eusauropod and possesses two potential autapomorphies. However, as a result of the fragmentary nature of the material and the uncertainty surrounding its association, a new taxon is not erected. Of the numerous specimens referred to ‘Bothriospondylus’, however, several remains are considered diagnostic: Ornithopsis hulkei (Early Cretaceous, UK), Lapparentosaurus madagascariensis (Middle Jurassic, Madagascar) and Nopcsaspondylus alarconensis (early Late Cretaceous, Argentina). At least three types of sauropod were present in the Bathonian (Middle Jurassic) of north‐west Madagascar, with a basal eusauropod (Archaeodontosaurus), a more derived eusauropod (‘B. madagascariensis’) and a titanosauriform (Lapparentosaurus) all approximately contemporaneous. Palaeocontinental reconstructions suggest that Middle Jurassic Madagascan sauropods would still have been capable of global biotic interchange, and this is perhaps reflected in their diverse assemblage. Re‐evaluation of these Malagasy forms has shed new light on this important time period in sauropod evolution.  相似文献   

5.
6.
Increased excavation of dinosaurs from China over the last two decades has enriched the record of Asian titanosauriform sauropods. However, the relationships of these sauropods remain contentious, and hinges on a few well-preserved taxa, such as Euhelopus zdanskyi. Here we describe a new sauropod, Yongjinglong datangi gen. nov. et sp. nov., from the Lower Cretaceous Hekou Group in the Lanzhou Basin of Gansu Province, northwestern China. Yongjinglong datangi is characterized by the following unique combination of characters, including seven autapomorphies: long-crowned, spoon-shaped premaxillary tooth; axially elongate parapophyses on the cervical vertebra; very deep lateral pneumatic foramina on the lateral surfaces of the cervical and cranial dorsal vertebral centra; low, unbifurcated neural spine fused with the postzygapophyses to form a cranially-pointing, triangular plate in a middle dorsal vertebra; an “XI”-shaped configuration of the laminae on the arches of the middle dorsal vertebrae; a very long scapular blade with straight cranial and caudal edges; and a tall, deep groove on the lateral surface of the distal shaft of the radius. The new specimen shares several features with other sauropods: a pronounced M. triceps longus tubercle on the scapula and ventrolaterally elongated parapophyses in its cervical vertebra as in Euhelopodidae. Based on phylogenetic analyses Yongjinglong datangi is highly derived within Titanosauria, which suggests either a remarkable convergence with more basal titanosauriform sauropods in the Early Cretaceous or a retention of plesiomorphic features that were lost in other titanosaurians. The morphology and remarkable length of the scapulocoracoid reveal an unusual relationship between the shoulder and the middle trunk: the scapulocoracoid spans over half of the length of the trunk. The medial, notch-shaped coracoid foramen and the partially fused scapulocoracoid synostosis suggest that the specimen is a subadult individual. This specimen sheds new light on the diversity of Early Cretaceous Titanosauriformes in China.  相似文献   

7.
Titanosauriformes is a conspicuous and diverse group of sauropod dinosaurs that inhabited almost all land masses during Cretaceous times. Besides the diversity of forms, the clade comprises one of the largest land animals found so far, Argentinosaurus, as well as some of the smallest sauropods known to date, Europasaurus and Magyarosaurus. They are therefore good candidates for studies on body size trends such as the Cope's rule, the tendency towards an increase in body size in an evolutionary lineage. We used statistical methods to assess body size changes under both phylogenetic and nonphylogenetic approaches to identify body size trends in Titanosauriformes. Femoral lengths were collected (or estimated from humeral length) from 46 titanosauriform species and used as a proxy for body size. Our findings show that there is no increase or decrease in titanosauriform body size with age along the Cretaceous and that negative changes in body size are more common than positive ones (although not statistically significant) for most of the titanosauriform subclades (e.g. Saltasaridae, Lithostrotia, Titanosauria and Somphospondyli). Therefore, Cope's rule is not supported in titanosauriform evolution. Finally, we also found a trend towards a decrease of titanosauriform mean body size coupled with an increase in body size standard deviation, both supporting an increase in body size variation towards the end of Cretaceous.  相似文献   

8.
9.
10.
The diversification and early evolution of neosauropod dinosaurs is mainly recorded from the Upper Jurassic of North America, Europe, and Africa. Our understanding of this evolutionary stage is far from complete, especially in the Southern Hemisphere. A partial skeleton of a large sauropod from the Upper Jurassic Cañadón Calcáreo Formation of Patagonia was originally described as a ‘cetiosaurid’ under the name Tehuelchesaurus benitezii. The specimen is here redescribed in detail and the evidence presented indicates that this taxon is indeed a neosauropod, thus representing one of the oldest records of this clade in South America. A complete preparation of the type specimen and detailed analysis of its osteology revealed a great number of features of phylogenetic significance, such as fully opisthocoelous dorsal vertebrae, the persistence of true pleurocoels up to the first sacral vertebra, associated with large camerae in the centrum and supraneural camerae, and an elaborate neural arch lamination, including two apomorphic laminae in the infradiapophyseal fossa. The phylogenetic relationships of this taxon are tested through an extensive cladistic analysis that recovers Tehuelchesaurus as a non‐titanosauriform camarasauromorph, deeply nested within Neosauropoda. Camarasauromorph sauropods were widely distributed in the Late Jurassic, indicating a rapid evolution and diversification of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 605–662.  相似文献   

11.
Abstract:  The largest known flying organisms are the azhdarchid pterosaurs, a pterodactyloid clade previously diagnosed by the characters of their extremely elongate middle-series cervical vertebrae. The named species of the Azhdarchidae are from the Late Cretaceous. However, isolated mid-cervical vertebrae with similar dimensions and characters have been referred to this group that date back to the Late Jurassic, implying an almost 60 million year gap in the fossil record of this group and an unrecorded radiation in the Jurassic of all the major clades of the Pterodactyloidea. A new pterosaur from the Early Cretaceous of Liaoning Province of China, Elanodactylus prolatus gen. et sp. nov., is described with mid-cervical vertebrae that bear these azhdarchid characters but has other postcranial material that are distinct from the members of this group. Phylogenetic analysis of the new species and the Pterodactyloidea places it with the Late Jurassic vertebrae in the Late Jurassic–Early Cretaceous Ctenochasmatidae and reveals that the characters of the elongate azhdarchid vertebrae appeared independently in both groups. These results are realized though the large taxon sampling in the analysis demonstrating that the homoplastic character states present in these two taxa were acquired in a different order in their respective lineages. Some of these homoplastic characters were previously thought to appear once in the history of pterosaurs and may be correlated to the extension of the neck regions in both groups. Because the homoplastic character states in the Azhdarchidae and Ctenochasmatidae are limited to the mid-cervical vertebrae, these states are termed convergent based on a definition of the term in a phylogenetic context. A number of novel results from the analysis presented produce a reorganization in the different species and taxa of the Pterodactyloidea.  相似文献   

12.
Sauropod dinosaurs are poorly represented in the Lower Cretaceous of eastern Asia. Here, we describe a number of isolated sauropod teeth from the Kuwajima Formation (?Berriasian–?Hauterivian) of Shiramine, Japan. The mosaic of shared derived characters and symplesiomorphies displayed by the teeth indicate that they are referable to a basal member of the titanosauriform radiation. A taxonomic review of previously described sauropod specimens from eastern and south–eastern Asia reveals that a diversity of sauropods (including a titanosaurian, a basal titanosauriform and a ?euhelopodid, as well as several forms of indeterminate systematic position) was present in this region in the Early Cretaceous. This diversity conflicts with previous suggestions that eastern Asia was biogeographically isolated from the rest of Laurasia until the late Early Cretaceous and that the sauropod fauna was limited to the endemic East Asian clade Euhelopodidae. The presence of titanosauriform sauropods in the basal Cretaceous of Japan and Thailand indicate that the proposed faunal isolation of eastern Asia ended approximately 20 myr earlier than usually suggested.  相似文献   

13.
14.
A phylogenetic analysis of the leafhopper genus Apogonalia was conducted based on a matrix of 40 terminal taxa and 147 morphological characters. The analysis yielded 1391 equally most‐parsimonious trees, which do not support the monophyly of Apogonalia in the strict consensus. A successive weighting procedure yielded 62 trees in which the genus appeared as a monophyletic group. The strict consensus of these 62 trees is almost entirely dichotomous, showing only two polytomies. The test of phylogenetic integrity was applied for distinct variations of three species: A. germana, A. sanguinipes, and A. histrio. Only for the first species was the conjecture that its variations belong to the same entity corroborated. The best‐supported clade within Apogonalia, which has several synapomorphies and high branch support indices, comprises nine Antillean endemic species. This distributional pattern probably was originated by vicariance in the Late Cretaceous, when the Proto‐Antillean archipelago was pushed north‐eastward by the Caribbean Plate to become the modern Greater Antilles. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 548–570.  相似文献   

15.
16.
Morphological variation in Ephedra (Gnetales) is limited and confusing from an evolutionary perspective, with parallelisms and intraspecific variation. However, recent analyses of molecular data provide a phylogenetic framework for investigations of morphological traits, albeit with few informative characters in the investigated gene regions. We document morphological, anatomical and histological variation patterns in the female reproductive unit and test the hypothesis that some Early Cretaceous fossils, which share synapomorphies with Ephedra, are members of the extant clade. Results indicate that some morphological features are evolutionarily informative although intraspecific variation is evident. Histology and anatomy of cone bracts and seed envelopes show clade‐specific variation patterns. There is little evidence for an inclusion of the Cretaceous fossils in the extant clade. Rather, a hypothesized general pattern of reduction of the vasculature in the ephedran seed envelope, probably from four vascular bundles in the fossils, to ancestrally three in the living clade, and later to two, is consistent with phylogenetic and temporal analyses, which indicate that extant diversity evolved after the Cretaceous–Tertiary boundary. Notwithstanding striking similarities between living and Cretaceous Ephedra, available data indicate that the Mesozoic diversity went almost entirely extinct in the late Cretaceous causing a bottleneck effect in Ephedra, still reflected today by an extraordinarily low level of genetic and structural diversity. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 387–430.  相似文献   

17.
Abstract:  A new semionotiform fish, Isanichthys palustris gen. et sp. nov., is described from the Late Jurassic – Early Cretaceous Phu Kradung Formation, north-east Thailand. I. palustris is known from a single, nearly complete specimen found alongside abundant Lepidotes specimens at the Phu Nam Jun locality. I. palustris shows a mixture of semionotid-like characters, such as the pattern of cheek ossifications, and lepisosteid-like characters, such as the body shape and a dorsal fin opposed by an anal fin. I. palustris possesses only some of the characters currently used to define the Semionotidae. Cladistic analyses including various semionotid and gar taxa, together with Amia calva and Leptolepis coryphaenoides , suggest that the Semionotiformes (Lepisosteidae and 'Semionotidae') form a monophyletic clade, but the 'Semionotidae' taxa form an unresolved polytomy. The relationships between Semionotiformes, Halecomorphi and Teleostei are unresolved. When restricted to the best-known taxa, however, the analysis shows the monophyly of the Semionotidae sensu stricto ( Semionotus + Lepidotes ) and a sister-group relationship between halecomorphs and teleosts. These last two results are regarded as the preferred hypothesis for further studies. I. palustris is the only known example of a predaceous, probably piscivorous, 'semionotid'. It illustrates the great diversity and ecological adaptation of the semionotiforms during the Late Jurassic – Early Cretaceous. We question the phylogenetic relationships of 'ancient fishes' founded on molecular-based trees because we suspect that the use of very few Recent taxa as representatives of previously diverse lineages is an inevitable, but important, bias in the construction of such trees.  相似文献   

18.
19.
Metriorhynchoid crocodylians represent the pinnacle of marine specialization within Archosauria. Not only were they a major component of the Middle Jurassic–Early Cretaceous marine ecosystems, but they provide further examples that extinct crocodilians did not all resemble their modern extant relatives. Here, we use a varied toolkit of techniques, including phylogenetic reconstruction, geometric morphometrics, diversity counts, discrete character disparity analysis, and biomechanical finite‐element analysis (FEA), to examine the macroevolutionary history of this clade. All analyses demonstrate that this clade became more divergent, in terms of biodiversity, form, and function, up until the Jurassic–Cretaceous boundary, after which there is no evidence for recovery or further radiations. A clear evolutionary trend towards hypercarnivory in Dakosaurus is supported by phylogenetic character optimization, morphometrics, and FEA, which also support specialized piscivory within Rhacheosaurus and Cricosaurus. Within Metriorhynchoidea, there is a consistent trend towards increasing marine specialization, with the hypermarine Cricosaurus exhibiting numerous convergences with other Mesozoic marine reptiles (e.g. loss of the deltopectoral crest and retracted external nares). In addition, biomechanics, morphometrics, and character‐disparity analyses consistently distinguish the two newly erected metriorhynchid subfamilies. This study illustrates that together with phylogeny, quantitative assessment of diversity, form, and function help elucidate the macroevolutionary pattern of fossil clades. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 801–859.  相似文献   

20.
Shunosaurus, from the Middle Jurassic of China, is probably the best‐known basal sauropod and is represented by several complete skeletons. It is unique among sauropods in having a small, bony club at the end of its tail. New skull material provides critical information about its anatomy, brain morphology, tooth replacement pattern, feeding habits and phylogenetic relationships. The skull is akinetic and monimostylic. The brain is relatively small, narrow and primitively designed. The tooth replacement pattern exhibits back to front replacement waves in alternating tooth position. The teeth are spatulate, stout and show well‐developed wear facets indicative of coarser plant food. Upper and lower tooth rows interdigitate and shear past each other. Tooth morphology, skull architecture, and neck posture indicate that Shunosaurus was adapted to ground feeding or low browsing. Shunosaurus exhibits the following cranial autapomorphies: emargination of the ventral margin of the jugal/quadratojugal bar behind the tooth row; postorbital contains a lateral pit; vomers do not participate in the formation of the choanae; pterygoid is extremely slender and small with a dorsal fossa; quadrate ramus of the pterygoid is forked; quadratojugal participates in the jaw articulation; tooth morphology is a combination of cylindrical and spatulate form; basipterygoid process is not wrapped by the caudal process of the pterygoid; trochlear nerve has two exits; occlusal level of the maxillary tooth row is convex downward, whereas that of the dentary is concave upward, acting like a pair of garden shears; dentary tooth count is 25 or more; and the replacing teeth invade the labial side of the functional teeth. Cranial characters among the basal sauropods are reviewed. As Shunosaurus is the earliest sauropod for which cranial remains are known, it occupies an important position phylogenetically, showing the modification of skull morphology from the prosauropod condition. Although the skull synapomorphies of Sauropoda are unknown at present, 27 cranial synapomorphies are known for the clade Eusauropoda. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society, 2002, 136 , 145?169.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号