首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A process for l-leucine production was studied using Corynebacterium glutamicum for the conversion of -ketoisocaproate. When this precursor was added to the culture medium in a concentration of 20 g/l about 16 g/l l-leucine were formed after a fermentation time of 57 h and the molar yield was 91%. Using a fed-batch culture it was possible to produce 24 g/l of l-leucine from 32 g/l of -ketoisocaproate within 23 h. Enzymatic studies indicate that in this glutamate-producing bacterium -ketoisocaproate is converted into l-leucine via the transaminase B reaction and l-glutamate is regenerated by the glutamate dehydrogenase. By the addition of -ketoisocaproate to the culture medium the specific activity of transaminase B was increased threefold.  相似文献   

2.
The inhibitory effects of human α2-macroglobulin (α2-M), a major plasma proteinase inhibitor, on human pepsin and gastricsin were investigated. The activities of pepsin and gastricsin towards a protein substrate (reduced and carboxymethylated ribonuclease A) were significantly inhibited by α2-M at pH 5.5, whereas those towards a peptide substrate (oxidized insulin B-chain) were scarcely inhibited. Under these conditions at pH 5.5, pepsin and gastricsin cleaved α2-M mainly at the His694-Ala695 bond and Leu697-Val698 bond, respectively, in the bait regions sequence of α2-M. The conformation of α2-M was also shown to be markedly altered upon inhibition of these enzymes as examined by native polyacrylamide gel electrophoresis and electron microscopy. These results show the entrapment and concomitant inhibition of those proteinases by α2-M.  相似文献   

3.
Inhibition of gluconeogenesis by α-oxo acids   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

4.
Summary. We previously reported that L-leucine suppresses myofibrillar proteolysis in chick skeletal muscles. In the current study, we compared the effects of L- and D-enantiomers of leucine on myofibrillar proteolysis in skeletal muscle of chicks. We also assessed whether leucine itself or its metabolite, α-ketoisocaproate (α-KIC), mediates the effects of leucine. Food-deprived (24 h) chicks were orally administered 225 mg/100 g body weight L-leucine, D-leucine or α-KIC and were sacrificed after 2 h. L-Leucine administration had an obvious inhibitory effect on myofibrillar proteolysis (plasma Nτ-methylhistidine concentration) in chicks while D-leucine and α-KIC were much more effective. We also examined the expression of the proteolytic-related genes (ubiquitin, proteasome, m-calpain and cathepsin B) by real-time PCR of cDNA in chick skeletal muscles. Ubiquitin mRNA expression was decreased by D-leucine and α-KIC but not L-leucine. Proteasome and m-calpain mRNA expressions as well as cathepsin B mRNA expression were likewise decreased by L-leucine, D-leucine and α-KIC. These results indicate that D-leucine and α-KIC suppress proteolytic-related genes, resulting in an decrease in myofibrillar proteolysis while L-leucine is much less effective in skeletal muscle of chicks, may be explain by conversion of D-leucine to α-KIC.  相似文献   

5.
Aggregation of alpha-synuclein (αS) into oligomers is critically involved in the pathogenesis of Parkinson's disease (PD). Using confocal single-molecule fluorescence spectroscopy, we have studied the effects of 14 naturally-occurring polyphenolic compounds and black tea extract on αS oligomer formation. We found that a selected group of polyphenols exhibited potent dose-dependent inhibitory activity on αS aggregation. Moreover, they were also capable of robustly disaggregating pre-formed αS oligomers. Based upon structure-activity analysis, we propose that the key molecular scaffold most effective in inhibiting and destabilizing self-assembly by αS requires: (i) aromatic elements for binding to the αS monomer/oligomer and (ii) vicinal hydroxyl groups present on a single phenyl ring. These findings may guide the design of novel therapeutic drugs in PD.  相似文献   

6.
Kinetic changes of alpha-glucosidase from Saccharomyces cerevisiae in guanidinium chloride (GdmCl) and SDS solutions were investigated. The results showed both denaturants can lead conformational changes and loss of enzymatic activities. However, the concentrations of denaturants causing loss of activities were much lower than that of conformational changes, which suggested that the conformation of active site of α-glucosidase was more fragile than the whole molecular conformation in response to the two denaturants. According to the different kinetic process of the enzyme in the GdmCl and SDS solutions, the further investigation on the process of denaturation were made, it showed GdmCl and SDS had different types of inhibition and different types of interaction with the enzyme. Furthermore, the mechanisms of the two denaturants were discussed.  相似文献   

7.
The inhibition of α-amylase from human saliva by polyphenolic components of tea and its specificity was investigated in vitro. Four kinds of green tea catechins, and their isomers and four kinds of their dimeric compounds (theaflavins) produced oxidatively during black tea production were isolated. They were (?)-epicatechin (EC), (?)-epigallocatechin (EGC), (?)-epicatechin gallate (ECg), (?)-epigallocatechin gallate (EGCg), (?)-catechin (C), (?)-gallocatechin (GC), (?)-catechin gallate (Cg), (?)-gallocatechin gallate (GCg), theaflavin (TF1), theaflavin monogallates (TF2A and TF2B), and theaflavin digallate (TF3). Among the samples tested, EC, EGC, and their isomers did not have significant effects on the activity of α-amylase. All the other samples were potent inhibitors and the inhibitory effects were in the order of TF3>TF2A>TF2B>TFl>Cg> GCg > ECg > EGCg. The inhibitory patterns were noncompetitive except for TF3.  相似文献   

8.
alpha-Cyano-4-hydroxycinnamate greatly inhibits the transport of pyruvate but not that of acetate or butyrate in liver mitochondria and erythrocytes. In the latter, lactate uptake is also inhibited. It is concluded that a specific carrier is involved in membrane transport of pyruvate and that the plasma-membrane carrier may also be involved in lactate transport.  相似文献   

9.
Dizene dicarboxylic acid bis-(N,N-dimethylamide), commonly called diamide, is known to oxidize stoichiometrically intracellular pools of reduced glutathione and inhibit the accumulation of sugars and amino acids by rat kidney slices. Incubation of rat renal cortical slices in diamide also leads to a significant decrease in the level of endogenous protein kinase activity. The inhibition of sugar and amino acid transport and protein kinase activity by diamide is partially reversible by the addition of exogenous glutathione or other thiols. A comparison of protein kinase activity with amino acid and sugar transport at various concentrations of diamide indicates that there is a high degree of correlation between these two processes.  相似文献   

10.
11.
Methyl succinate (MS) and alpha-ketoisocaproate (KIC) when applied alone to cultured pancreatic islets or INS-1 832/13 cells do not stimulate insulin release. However, when the two metabolites are combined together they strongly stimulate insulin release. Studying the possible explanations for this complementarity has provided clues to the pathways involved in insulin secretion. MS increased carbon incorporation of KIC into acid-precipitable material and lipid in INS-1 cells. In isolated mitochondria, MS alone increased malate, but MS plus KIC increased citrate, alpha-ketoglutarate, and isocitrate. These data and the known pathways of their metabolism suggest that MS supplies the oxaloacetate component of citrate and KIC supplies the acetate component of citrate. Other citric acid cycle intermediates can be formed from citrate enabling anaplerosis to supply precursors for extramitochondrial pathways. In addition, KIC, glucose and pyruvate can be metabolized to acetoacetate. In an INS-1 cell line deficient in ATP citrate lyase, incorporation of carbon from pyruvate into acid-precipitable material and lipid was not lowered. This negative result is in agreement with our recent discovery that citrate is not the only carrier of acyl groups from the mitochondria to the cytosol in the beta cell and that acetoacetate can also transfer acyl carbon to the cytosol.  相似文献   

12.
Giuseppe Paradies 《BBA》1984,766(2):446-450
The binding of α-cyanocinnamate to rat-heart mitochondrial membrane was investigated using α-cyano[14C]cinnamate. The binding was correlated to the inhibition of pyruvate transport. The results obtained demonstrate that both these functions reach saturation at the same titre of the inhibitor. Quantitative parameters of α-cyano[14C]cinnamate binding have been determined. The binding can be prevented by pyruvate and other substrates of the carrier but not by acetate. Pyruvate decreases the affinity of α-cyanocinnamate binding, leaving the maximum number of binding unchanged. It is concluded that rat-heart mitochondria contain a specific site at which α-cyanocinnamate binds which is directly involved in the inhibition of pyruvate transport.  相似文献   

13.
In agreement with its well-known inhibition of mitochondrial carrier-mediated pyruvate transport, α-cyano-4-hydroxycinnamate elevates pyruvate and lactate levels in suspensions of isolated rat hepatocytes, whereas it lowers citrate levels and causes strongly depressed rates of fatty acid synthesis with glucose as carbon precursor. It stimulates the oxidation of exogenous fatty acids and inhibits their esterification.α-Cyano-4-hydroxycinnamate also impairs fatty acid synthesis from substrates (acetate, octanoate) that bypass mitochondrial pyruvate transport. Cholesterol synthesis from acetate, a process utilizing the same cytosolic acetyl-CoA pool as does fatty acid synthesis, is hardly affected by α-cyano-4-hydroxy-cinnamate. These observations suggest an inhibitory site of action of α-cyano-4-hydroxycinnamate located in the fatty-acid biosynthetic pathway itself. This suggestion has been confirmed by demonstrating the inhibition of purified rat-liver acetyl-CoA carboxylase by α-cyano-4-hydroxycinnamate at concentrations prevailing in the intact cell upon incubation with this compound.Maximal inhibition of purified acetyl-CoA carboxylase requires about 20 min of preincubation of the enzyme with α-cyano-4-hydroxycinnamate. Fatty acid synthesis from acetate in the intact cells is further diminished after an incubation time of 20 min.The inhibition by α-cyano-4-hydroxycinnamate of fatty acid synthesis from acetate can be partially overcome by insulin. Possible interactions of the inhibitor and the hormone at the level of acetyl-CoA carboxylase are discussed.It is concluded that α-cyano-4-hydroxycinnamate does not provide a simple and unequivocal tool to distinguish between actions of effectors on hepatic fatty acid synthesis per se and on the glycolytic pathway.  相似文献   

14.
With a variety of physiological and pharmacological functions, menaquinone is an essential prenylated product that can be endogenously converted from phylloquinone (VK1) or menadione (VK3) via the expression of Homo sapiens UBIAD1 (HsUBIAD1). The methylotrophic yeast, Pichia pastoris, is an attractive expression system that has been successfully applied to the efficient expression of heterologous proteins. However, the menaquinone biosynthetic pathway has not been discovered in P. pastoris. Firstly, we constructed a novel synthetic pathway in P. pastoris for the production of menaquinone-4 (MK-4) via heterologous expression of HsUBIAD1. Then, the glyceraldehyde-3-phosphate dehydrogenase constitutive promoter (PGAP) appeared to be mostsuitable for the expression of HsUBIAD1 for various reasons. By optimizing the expression conditions of HsUBIAD1, its yield increased by 4.37 times after incubation at pH 7.0 and 24 °C for 36 h, when compared with that under the initial conditions. We found HsUBIAD1 expressed in recombinant GGU-23 has the ability to catalyze the biosynthesis of MK-4 when using VK1 and VK3 as the isopentenyl acceptor. In addition, we constructed a ribosomal DNA (rDNA)-mediated multi-copy expression vector for the fusion expression of SaGGPPS and PpIDI, and the recombinant GGU-GrIG afforded higher MK-4 production, so that it was selected as the high-yield strain. Finally, the yield of MK-4 was maximized at 0.24 mg/g DCW by improving the GGPP supply when VK3 was the isopentenyl acceptor. In this study, we constructed a novel synthetic pathway in P. pastoris for the biosynthesis of the high value-added prenylated product MK-4 through heterologous expression of HsUBIAD1 and strengthened accumulation of GGPP. This approach could be further developed and accomplished for the biosynthesis of other prenylated products, which has great significance for theoretical research and industrial application.  相似文献   

15.
The fibrillization of α-synuclein (α-syn) is a key event in the pathogenesis of α-synucleinopathies. Mutant α-syn (A53T, A30P, or E46K), each linked to familial Parkinson's disease, has altered aggregation properties, fibril morphologies, and fibrillization kinetics. Besides α-syn, Lewy bodies also contain several associated proteins including small heat shock proteins (sHsps). Since α-syn accumulates intracellularly, molecular chaperones like sHsps may regulate α-syn folding and aggregation. Therefore, we investigated if the sHsps αB-crystallin, Hsp27, Hsp20, HspB8, and HspB2B3 bind to α-syn and affect α-syn aggregation. We demonstrate that all sHsps bind to the various α-syns, although the binding kinetics suggests a weak and transient interaction only. Despite this transient interaction, the various sHsps inhibited mature α-syn fibril formation as shown by a Thioflavin T assay and atomic force microscopy. Interestingly, HspB8 was the most potent sHsp in inhibiting mature fibril formation of both wild-type and mutant α-syn. In conclusion, sHsps may regulate α-syn aggregation and, therefore, optimization of the interaction between sHsps and α-syn may be an interesting target for therapeutic intervention in the pathogenesis of α-synucleinopathies.  相似文献   

16.
Zeng  Weizhu  Xu  Sha  Du  Guocheng  Liu  Song  Zhou  Jingwen 《Bioprocess and biosystems engineering》2018,41(10):1519-1527
Bioprocess and Biosystems Engineering - A strategy to achieve the efficient co-production of α-ketoglutarate (KGA) and pyruvate (PYR) via Yarrowia lipolytica fermentation was established in...  相似文献   

17.
Gallic acid, methyl gallate, dehydrodigallic acid, three tannic constituents named MP–2, MP–3, MP–4 and a related substance MP–10 were isolated from chestnut galls by solvent fractionation and column chromatography. Hydrolysis with tannase revealed the components of these tannic substances as follows, MP–2: d-glucose, gallic acid and compound I (3,4, 5-trihydroxybenzyl alcohol); MP–3 and MP–4: d-glucose, compound I and compound II (dehydrodigallic acid); MP–10: d-glucose and compound I.  相似文献   

18.
Reactive oxygen species (ROS) play an important role in normal signaling events and excessive ROS are associated with many pathological conditions. The amount of ROS in cells is dependent on both the production of ROS by the mitochondrial electron transport chain and their removal by ROS-detoxifying enzymes. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of mitochondrial functions and a key regulator of the ROS-detoxifying program. However, the impact of PGC-1α on the topology and rate of superoxide production by the mitochondrial electron transport chain is not known. We report here, using mitochondria from muscle creatine kinase–PGC-1α transgenic mice, that PGC-1α does not affect the topology of ROS production, but increases the capacity of complexes I and III to generate ROS. These changes are associated with increased mitochondrial respiration and content of respiratory chain complexes. When normalizing ROS production to mitochondrial respiration, we find that PGC-1α preserves the percentage of free radical leak by the electron transport chain. Together, these data demonstrate that PGC-1α regulates the intrinsic properties of mitochondria in such a way as to preserve a tight coupling between mitochondrial respiration and ROS production.  相似文献   

19.
The human neutrophil peptide 1 (HNP-1) is known to block the human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism of inhibition is poorly understood. We examined the effect of HNP-1 on HIV-1 entry and fusion and found that, surprisingly, this α-defensin inhibited multiple steps of virus entry, including: (i) Env binding to CD4 and coreceptors; (ii) refolding of Env into the final 6-helix bundle structure; and (iii) productive HIV-1 uptake but not internalization of endocytic markers. Despite its lectin-like properties, HNP-1 could bind to Env, CD4, and other host proteins in a glycan- and serum-independent manner, whereas the fusion inhibitory activity was greatly attenuated in the presence of human or bovine serum. This demonstrates that binding of α-defensin to molecules involved in HIV-1 fusion is necessary but not sufficient for blocking the virus entry. We therefore propose that oligomeric forms of defensin, which may be disrupted by serum, contribute to the anti-HIV-1 activity perhaps through cross-linking virus and/or host glycoproteins. This notion is supported by the ability of HNP-1 to reduce the mobile fraction of CD4 and coreceptors in the plasma membrane and to precipitate a core subdomain of Env in solution. The ability of HNP-1 to block HIV-1 uptake without interfering with constitutive endocytosis suggests a novel mechanism for broad activity against this and other viruses that enter cells through endocytic pathways.  相似文献   

20.
Pyruvate is formed on incubation of l-cysteine with acetone powder preparations of Acacia georginae but in the presence of cyanide, β-cyanoalanine is produced and pyruvate production is highly depressed. The pH optimum for pyruvate production is 8·5. In the presence of fluoride (1·5 mM), the pH profile is unchanged and in the presence of cyanide (1·5 mM), minimal pyruvate production occurs at pH 8·5. Although addition of pyridoxal phosphate had no influence on pyruvate or β-Cyanoalanine production, these processes were prevented by sodium borohydride, an inhibitor of pyridoxal enzymes. Neither l-serine nor O-acetyl-l-serine serve as alternative substrates for pyruvate production. β-Fluoroalanine was not detected on incubating fluoride with an enzyme preparation from A. georginae acetone powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号