首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of [3H]ouabain binding to intact cardiac cells were examined using myocytes obtained from guinea-pig heart. In intact cells, the use of excess unlabeled ouabain results in an under-estimation of nonspecific binding, presumably due to cytotoxic effects of the unlabeled glycoside; estimation of the specific binding, as that to rapidly releasing sites yields more accurate results. Specific [3H]ouabain binding to myocytes is promoted by an increase in Na+ influx, indicating that normal intracellular Na+ concentration is insufficient to fully stimulate glycoside binding. High concentrations of [3H]ouabain seem to increase the apparent affinity of binding sites for the glycoside via increases in intracellular Na+ concentration resulting from sodium-pump inhibition; hence the binding reaction may be regarded as having a novel type of cooperativity. This cooperativity has kinetics different from those of classical positive cooperativity based on binding-site interactions, and is apparent with toxic concentrations of the glycoside that cause marked increases in intracellular Na+ concentrations.  相似文献   

2.
The cellular actions of ouabain are complex and involve different pathways, depending on the cell type and experimental conditions. Several studies have reported that Madin–Darby canine kidney (MDCK) cellular sensitivity to ouabain is not related to Na-K-ATPase inhibition, and others showed that some cell types, such as Ma104, are resistant to ouabain toxicity albeit their Na-K-ATPase isoforms possess high affinity for this glycoside. We describe here that the effects of ouabain and ouabagenin also diverge in MDCK and Ma104 cells, being MDCK cells more resistant to ouabagenin, while Ma104 cells are resistant to both molecules. This feature seems to correlate with induction of cell signaling, since ouabain, but not ouabagenin, induced an intense and sustained increase in tyrosine phosphorylation levels in MDCK cells. Moreover, ouabain-induced phosphorylation in Ma104 cells was approximately half than that observed in MDCK cells. The proportion between α and β subunits of Na-K-ATPase was similar in MDCK cells, though Ma104 cells presented more α subunits, located mainly at the cytoplasm. Furthermore, a fluorescent ouabain-analog labeled mainly the cytoplasm of Ma104 cells, the opposite of that seen in MDCK cells, corroborating the results using anti-Na-K-ATPase antibodies. Hence, the results suggest that ouabain and ouabagenin differ in terms of Na-K-ATPase inhibition and cell signaling activation in MDCK cells. Additionally, MDCK and Ma104 cell lines respond differently to ouabain, perhaps due to an intrinsic ability of this glycoside to selectively reach the cytoplasm of Ma104 cells.  相似文献   

3.
Ouabain, a sodium pump (Na+/ K+-ATPase) inhibitor, has been shown to act as a hormone and is possibly involved in the pathogenesis of hypertension. The mechanism by which ouabain may act was investigated using primary cultures of human umbilical artery endothelial cells (HUAECs), which are known to express and release the vasoconstrictive hormone endothelin (ET-1). Five minutes after application, low concentrations of ouabain induced Ca2+ oscillations and stimulated ET-1 release from endothelial cells into the medium. To investigate whether the observed effects were due to inhibition of the sodium pump, the effects of ouabain on the uptake of 86Rb+ by HUAECs were examined. Unexpectedly, ouabain concentrations below 10 nm stimulated 86Rb+ uptake by 15-20%, and in some experiments by 50%, results that are consistent with a stimulation of the pump. Within the concentration range 1-10 nm, ouabain induced a 2.5-fold stimulation (phosphorylation) of mitogen-activated protein kinase (MAP kinase). After incubation of HUAECs with ouabain for 12 h, the glycoside stimulated cell growth by 49 +/- 4%, as measured by cell number, with a maximum response at 5 nm. At similar concentrations, ouabain also increased ET-1 mRNA abundance by 19.5 +/- 3.1%. The results indicate that, by influencing ET-1 expression and release, ouabain may contribute to the regulation of vascular tone. The data also confirm that it is not a global inhibition of the sodium pump that is involved in the mechanism of action of this cardiac glycoside.  相似文献   

4.
The cardiac glycoside, ouabain, normally kills HeLa cells at concentrations of about 10−7 m or greater. By treating a population of HeLa cells with increasingly higher concentrations of the drug, a variant population was obtained of HeLa cells capable of growing in medium containing 10−4 M ouabain. Inhibition of volume regulation of cells subjected to hypotonic shock was used as a measure of inhibition of active transport of Na across the plasma membrane. In that way dose-response curves for the rapid effects of ouabain and other inhibitors of active Na transport were obtained with both the original, ouabain-sensitive (OS) and the variant, ouabain-resistant (OR) cells. Three other cardiac glycosides (digoxin, digitoxin and hellebrin) and two aglycones (digitoxigenin and strophanthidjn) were found to be equally as effective as ouabain in inhibiting volume regulation of the OS cells; the concentration which produced half-maximum inhibition, I(max/2), was about 6 × 10−7 M in each case. Similar inhibition of the OR population by ouabain was observed only when the concentration exceeded 10−4 m [I(max/2)∼2.5 × 10−4 m], and the other steroid compounds had no effect on the variant cells at the highest concentrations tested (∼2 × 10−5 m). OR and OS cells differed also in their sensitivities to the cardioactive erythrophleum alkaloid, coumingine; I(max/2) for OS and OR cells was 5 × 10−8 m and 6 × 10−7 M, respectively. These results, in addition to results of ouabain binding experiments and measurements of the rates of reversal of inhibition of volume regulation, suggest that a major reason for the differential sensitivities of the two phenotypes to these drugs is different affinities of their sodium pumps for inhibitors of active transport.  相似文献   

5.
Cellular growth has been found to be directly related to the amount of sodium pumping activity in mouse lymphoblasts (L5178-Y) cultured in varying concentrations of the cardiac glycoside, ouabain. No short-term adaptation (within one generation) occured; i.e., neither growth rate nor (Na+ + K+)-ATPase activity increased in cells cultured for 1-2 days in ouabain. Growth inhibition commenced after two hours, occurring concomitantly with decreased 3H-leucine incorporation into protein. The time course of this inhibition of protein synthesis, measured by leucine incorporation was similar to, but slightly slower than the time course or the dissipation of the sodium gradient. On the other hand, 3H-thymidine incorporation is unaffected by ouabain treatment over the same period. The uptake of 3H-alanine, a neutral amino acid thought to be transported via a Na+-dependent carri-r, was depressed concurrently with the sodium gradient dissipation. It is suggested, therefore, that ouabain inhibition of cellular growth results primarily from the dissipation of the sodium gradient leading to decreased Na+-dependent transport of amino acids (e.g., alanine) and, therefore, decreased protein synthesis, as observed by leucine incorporation. A sensitive and rapid method for determining ouabain inhibition of cell volume regulation is also described, which may prove potentially useful for assaying Na pump activity.  相似文献   

6.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

7.
Using small, intact frog muscles, the basic properties of Na+ and K+ transport were shown to resemble those of the (Na+ + K+)Mg2+ATPase (EC 3.6.1.3) isolated from skeletal muscle. (a) External K+ is essential for Na+ exit and K+ entry after the muscles are Na+-loaded and K+-depleted; (b) the ouabain concentration causing maximum inhibition of recovery is the same for transport as for the inhibition of the isolated enzyme. Ouabain causes a decrease in the sorbitol space and causes muscle fibre swelling. Absence of Ca2+ and Mg2+ inhibits recovery of normal Na+ and K+ concentrations and increases the sorbitol space. Insulin stimulates K+ uptake and Na+ loss in intact muscles but has no effect on the isolated sarcolemmal (Na+ + K+)Mg2+ATPase. Absence of divalent cations, addition of external ATP and of insulin enhance the ouabain inhibition of recovery. Bound ouabain was measured using [3H]ouabain and [14C]sorbitol (to measure the extracellular space). The process of binding was slowly reversible and was saturable within a range of ouabain concentrations from 1.48 X 10(-7) to 5.96 X 10(-7) M. From the nonexchangeable ouabain bound, the density of glycoside receptors was estimated to be 650 molecules per square micrometre of membrane surface. The absence of divalent cations, addition of external ATP and of insulin significantly enhanced the amount of ouabain bound. Substitution of Na+ and K+ by choline greatly reduced the bound ouabain.  相似文献   

8.
Cultures of human lymphocytes incubated for 48 hr in the presence of 2 × 10?7M solutions of the cardiotonic steroid ouabain lose the proliferative response to antigens (SL-0, SK-SD) but can still proliferate when stimulated by nonspecific mitogens (PHA, Con A, pokeweed mitogen). The two-way mixed lymphocyte reaction was also irreversibly lost if cells of both donors were subjected to ouabain pretreatment. Neither cell counts nor cell viability (determined by dye exclusion) were significantly affected by the ouabain treatment. Pretreatment of a suspension of macrophages with the cardiac glycoside did not diminish their capacity to restore the proliferative response to antigen of macrophage-depleted lymphocyte suspensions; on the other hand, untreated macrophages could not restore the proliferative response of cultures of ouabain-pretreated lymphocytes. The ouabain treatment did not change the proportion of cells able to bind fluorescent anti-immunoglobulin nor did it modify the proportion of lymphocytes forming rosettes with either untreated, or antibody coated, red cells. Increased concentration of K+ in the medium, either during or after the ouabain treatment, did not reduce the ouabain effect. We conclude that the selective loss of certain lymphocyte functions caused by ouabain pretreatment was due to an effect on the lymphocyte and not on the macrophage; the effect was not due to the elimination of a relatively large fraction of the cells nor to a generalized disappearance of membrane antigens and receptors.  相似文献   

9.
The cardiac glycoside sensitivity of the rat heart changes during postnatal maturation and in response to certain pathological conditions. The Na,K-ATPase is thought to be the receptor for cardiac glycosides, and there are three isozymes of its catalytic (alpha) subunit with different cardiac glycoside affinities: alpha 1 (low affinity) and alpha 2 and alpha 3 (high affinity). We examined the developmental expression of the alpha subunit isozymes in rat ventricular membrane preparations by immunoblotting with isozyme-specific antibodies. The alpha 1 isozyme was present throughout all stages of maturation. A developmental switch from alpha 3 to alpha 2 occurred between 14 and 21 days after birth. Measurements of [3H]ouabain binding and inhibition of Na,K-ATPase activity indicated that alpha 2 and alpha 3 should make equivalent contributions to ion pump capacity; in both neonatal natal and adult preparations, ouabain interacted with a single class of high-affinity binding sites (KD = 15 or 40 nM, respectively; Bmax = 4-5 pmol/mg protein), and at low concentrations produced a similar degree of Na,K-ATPase inhibition (25%). The results indicate that the developmental difference in cardiac glycoside sensitivity cannot be explained by quantitative differences in the proportion of high-affinity isozymes of the Na,K-ATPase. The switch from alpha 3 to alpha 2 coincides with other major changes in cardiac electrophysiology and calcium metabolism.  相似文献   

10.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

11.
Palytoxin (PTX), C129H223N3O54, a highly toxic substance isolated from zoanthids of Palythoa tuberculosa, inhibited (Na,K)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) prepared from guinea pig heart and hog cerebral cortex in a dose-dependent manner at concentrations greater than 10(-8) M. In the presence of Na (100 mM) and K (20 mM), PTX showed potency nearly equal to that of ouabain. When the ATPase was activated by the various Na concentrations at a constant K concentration, both PTX and ouabain inhibited the ATPase activity noncompetitively. On the other hand, when K concentration was changed at a constant Na concentration, PTX caused a competitive inhibition in all ranges of K concentrations employed, whereas ouabain caused a competitive inhibition at low concentrations and a noncompetitive inhibition at high concentrations.  相似文献   

12.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

13.
Binding of 3H-ouabain to human lymphocytes was measured for unstimulated and mitogen-treated cells. Both PHA and leucoagglutinin increased within minutes the rate of binding of the glycoside. The saturation number of binding sites was estimated to be 1.25×105/cell for non-stimulated lymphocytes; PHA caused the saturation level to rise to values about 2.3×105/cell. The rate of 3H-ouabain binding was very sensitive to the potassium concentration, and was inhibited in a manner approximated by a first order competitive relationship. Binding was both time and concentration dependent. Both ouabain and digoxin displaced the label. Estimates are provided for the affinity constants for uptake and turnover of ouabain on the lymphocyte surface.  相似文献   

14.
Endogenous cardiotonic steroids.   总被引:1,自引:0,他引:1  
The search for endogenous digitalis led to the isolation of ouabain from blood adrenals and hypothalamus. Additional cardiotonic steroids of the cardenolid and bufadienolide type seem to circulate in blood. Adrenal cortical cells in tissue culture release ouabain upon addition of angiotensin 11. Ouabain in blood is increased in 50% of Caucasians with low renin hypertension. Analogous to other steroid hormones, cardiotonic steroid hormones in blood are bound to a specific cardiac glycoside binding globulin. Since ouabain induced growth of myocytes in tissue culture, this effect probably mediates by partial inhibition of the sodium pump and consecutive rise of intracellular Ca2+ the thickening of the wall of arteries and myocardium. PST 2238, an antagonist of cardiac glycoside function at the sodium pump, leads in rats under prolonged therapy to a decrease of hypertension. The finding of ouabain as a new adrenal hormone of the Na+ metabolism and of ouabain antagonists opens new possibilities of therapy of hypertension and congestive heart failure.  相似文献   

15.
16.
Ouabain binding by the human erythrocyte membrane is reversible, exhibits a high degree of chemical specificity, and can be detected at ouabain concentrations as low as 1 x 10-10 M. The relation between ouabain binding and ouabain concentration can be described by a rectangular hyperbola permitting determination of the maximal binding (B max) and the ouabain concentration at which ouabain binding is half-maximal (KB). Reducing the external sodium concentration increased KB, while reducing the external potassium concentration decreased KB. Neither cation altered B max The reciprocal of KB was a linear function of the sodium concentration at sodium concentrations ranging from 0 to 150 mM. Conversely, the relation between the reciprocal of KB and the external potassium concentration was nonlinear, and raising the potassium concentration above 4 mM produced no further increase in KB. These results are compatible with a model which postulates that the erythrocyte membrane contains a finite number of receptors each composed of a glycoside-binding site and a cation-binding site. When sodium occupies the cation-binding site, the affinity of the glycoside site for ouabain is increased; when potassium occupies the cation-binding site the affinity of the glycoside site for ouabain is decreased.  相似文献   

17.
Na+,K+-ATPase has been purified from lamb kidney and consists of two polypeptide peaks on polyacrylamide gel electrophoresis with an enzyme activity of 1,000 mumole Pi/mg pro per hr. A scheme depicting the interaction of cardiac glycoside with the enzyme and ligand effects on binding has been constructed. Under all ligand conditions, ouabain binding tends to reach the same maximum if sufficient ouabain is present. Initial rates vary with ligand conditions. Using a chase method, the rate of dissociation of the glycoside from the enzyme is not influenced by the ligands present, although with separation of the enzyme-glycoside complex from the binding medium, differences are noted. The effect of ouabain on Na binding demonstrated two classes of sites, KD = 0.2 mM and KD = 18 mM. Denaturation decreased the high affinity sites. There was also a good correlation between ouabain binding and inhibition of Na binding. Clearly, ligands are critical in regulating cardiac glycoside interaction with the enzyme.  相似文献   

18.
The effects of ouabain 10(-6) M on rat and guinea pig hearts have been studied at 18 degrees C, in order to reduce almost fully both the Na+, K+-dependent ATPase activity and the ouabain induced inhibition of this enzyme. In isolated guinea pig hearts the positive inotropic response to ouabain obtained at 32 degrees C disappeared at 18 degrees C. On the contrary, the contractile strength of rat hearts was slightly reduced by ouabain and in the same manner at both temperatures. Current and voltage clamp experiments carried out at 18 degrees C in ventricular fibres revealed that ouabain 10(-6) M decreased both the action potential overshoot and the fast sodium current in rat and guinea pig, by reduction of the membrane sodium conductance. Ouabain did not change the calcium current in guinea pig preparations, whereas in rat heart muscle this current was reduced. The effects of ouabain on both the action potential plateau and outward repolarizing current indicated some inconsistencies from preparation to preparation and cannot therefore be considered as significant. The persistence of the ouabain induced alterations of g Na (in rat and guinea pig) and calcium current (in rat) at 18 degrees C supports the hypothesis of two ouabain cell receptors in heart muscle.  相似文献   

19.
Treatment with ouabain led to massive death of principal cells from collecting ducts (C7-MDCK), indicated by cell swelling, loss of mitochondrial function, an irregular pattern of DNA degradation, and insensitivity to pan-caspase inhibitor. Equimolar substitution of extracellular Na(+) by K(+) or choline(+) sharply attenuated the effect of ouabain on intracellular Na(+) and K(+) content but did not protect the cells from death in the presence of ouabain. In contrast to ouabain, inhibition of the Na(+)/K(+) pump in K(+)-free medium increased Na(+)(i) content but did not affect cell survival. In control and K(+)-free medium, ouabain triggered half-maximal cell death at concentrations of approximately 0.5 and 0.05 microM, respectively, which was consistent with elevation of Na(+)/K(+) pump sensitivity to ouabain in K(+)-depleted medium. Our results show for the first time that the death of ouabain-treated renal epithelial cells is independent of the inhibition of Na(+)/K(+) pump-mediated ion fluxes and the [Na(+)](i)]/[K(+)](i) ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号