首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
SYNOPSIS. Neoteny in the Mexican axolotl, Ambystoma mexicanum,is caused by homozygosity for a single recessive gene. The dominantallele causing physical metamorphosis is found in the closelyrelated species, Ambystoma tigrinum, with which it can hybridize.Despite the failure of axolotls to undergo physical metamorphosis,they do undergo a cryptic metamorphosis. A larval-to-adult hemoglobinform change, serum protein changes and other physiological eventsusually associated with amphibian metamorphosis occur duringearly larval life at ages comparable to the age at which Ambystomatigrinum undergoes both the cryptic and external metamorphicevents. Axolotl cryptic metamorphosis can be induced precociouslyby immersion of the larvae in low concentrations of thyroxine;physical metamorphosis can be induced with higher thyroxineconcentrations. The site of action of the gene responsible foraxolotl neoteny has not been identified. A change in the sensitivityof external metamorphic processes to thyroxine, or reduced hormonalstimulation by the pituitary or hypothalamus may be responsible.A comparison of these functions in Ambystoma tigrinum and theaxolotl may identify the lesion.  相似文献   

2.
Abstract: The metamorphic changes in levels of glycolipids and myelin proteins and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) in the brains of bullfrog tadpoles, adult frogs, and axolotls were investigated, with particular emphasis on myelin maturation. The concentrations of cerebroside. sulfatide, and galactosyldiacylglycerol gradually increased from the onset of prometamorphosis throughout the active metamorphic period and then greatly increased after metamorphosis was completed. The ratio of glucocerebroside to galactocerebroside increased greatly in the prometamorphic period and then rapidly decreased to the frog level during the climax period. The fatty acid compositions of cerebroside and sulfatide showed a developmental change, with 24:1 being more predominant in the later metamorphic stage. The proportion of hydroxy fatty acids increased up to the onset of the prometamorphic stage and thereafter remained constant at ∼ 50% of the total. The CNP activity remained unchanged throughout metamorphosis at 60% that in frog myelin and increased in the adult frog. The composition of tadpole myelin proteins remained constant during metamorphosis, with large basic protein being the most abundant, and in the frog, proteolipid protein and large basic protein were present in comparable amounts. The two adult forms of axolotl, i.e., the neotenous and metamorphosed forms, exhibited almost identical myelin constituents, and CNP activity in the neotenous form amounted to one-fifth that in the bullfrog. These results indicate that active biosynthesis of myelin marker components occurs as metamorphosis proceeds, but more pronounced changes of myelin components occur after metamorphosis is completed.  相似文献   

3.
4.
In the urodelan amphibian Pleurodeles waltlii, spontaneous anatomical metamorphosis was correlated with an increase in the serum level of thyroxine (T4). It was also accompanied by a change in the myofibrillar ATPase profile of the dorsal skeletal muscle; fibers of larval type were gradually replaced by the adult fiber types I, II A, and II B. Likewise, a myosin isoenzymic transition was observed in dorsal muscle, larval isomyosins were replaced by adult isoforms. In a related species, Ambystoma mexicanum, in which no spontaneous external metamorphosis occurs under standard conditions, the serum T4 level was shown to remain low. During further development, the myofibrillar ATPase profile acquired the adult fiber types, but a high percentage of immature fibers of type II C persisted. Myosin isoenzymic transition was also incomplete; larval isoforms were still distinguished in the neotenic adults. In experimental hypothyroidian P. waltlii, no external metamorphosis occurred; the myofibrillar ATPase profile was of the immature type, and the larval isomyosins persisted. Triiodothyronine induced experimental anatomical metamorphosis in A. mexicanum; only limited changes in the myofibrillar ATPase profile resulted from the treatment, but a complete myosin isoenzymic transition was observed. These results tend to indicate that a moderate increase in the level of thyroid hormone is sufficient to induce the differentiation of adult fiber types, together with the production of adult myosin isoforms in the skeletal dorsal muscle of amphibians, while a pronounced increase would be necessary for repressing the initial larval features.  相似文献   

5.
 Unlike most salamanders, the Mexican axolotl (Ambystoma mexicanum) fails to produce enough thyroxin to undergo anatomical metamorphosis, although a “cryptic metamorphosis” involving a change from fetal to adult hemoglobins has been described. To understand to what extent the development of the axolotl hemopoietic system is linked to anatomical metamorphosis, we examined the appearance and thyroxin dependence of class II molecules on thymus, blood, and spleen cells, using both flow cytometry and biosynthetic labeling followed by immunoprecipitation. Class II molecules are present on B cells as early as 7 weeks after hatching, the first time analyzed. At this time, most thymocytes, all T cells, and all erythrocytes lack class II molecules, but first thymocytes at 17 weeks, then T cells at 22 weeks, and finally erythrocytes at 26–27 weeks virtually all bear class II molecules. Class II molecules and adult hemoglobin appear at roughly the same time in erythrocytes. These data are most easily explained by populations of class II-negative cells being replaced by populations of class II-positive cells, and they show that the hemopoietic system matures at a variety of times unrelated to the increase of thyroxin that drives anatomical metamorphosis. We found that administration of thyroxin during axolotl ontogeny does not accelerate or otherwise affect the acquisition of class II molecules, nor does administration of drugs that inhibit thyroxin (sodium perchlorate, thiourea, methimazole, and 1-methyl imidazole) retard or abolish this acquisition, suggesting that the programs for anatomical metamorphosis and some aspects of hemopoietic development are entirely separate. Received: 15 July 1997 / Revised: 28 October 1997  相似文献   

6.
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.  相似文献   

7.
In ecological models, the timing of amphibian metamorphosis is dependent upon rate of larval growth, e.g., tadpoles that experience a decrease in growth rate can initiate metamorphosis early. Recent authors have suggested that this plasticity may be lost at some point during the larval period. We tested this hypothesis by exposing groups of tadpoles of the gray treefrog, Hyla versicolor, to different growth schedules. In endocrine models, metamorphosis is dependent on thyroxine levels and thyroxine is antagonized by prolactin (amphibian larval growth hormone), consistent with the idea that a rapidly growing tadpole can delay metamorphosis. Thus, we also manipulated the rate of development by supplementing or maintaining natural thyroxine levels for half of the tadpoles in each growth treatment. All tadpoles that received thyroxine supplements metamorphosed at the same time regardless of growth history. They also metamorphosed earlier than tadpoles not treated with thyroxine. Tadpoles not given thyroxine supplements metamorphosed at different times: those growing rapidly during day 15-34 metamorphosed earlier than tadpoles growing slowly. Growth rate before day 15 and after day 34 had no effect on metamorphic timing. The difference in larval period between these rapidly growing tadpoles and their sisters given thyroxine treatments was less than the same comparison for tadpoles that grew slowly during the same period. This apparent prolactin/thyroxine antagonism did not exist after day 34. These results are consistent with the hypothesis of a loss of plasticity in metamorphic timing.  相似文献   

8.
Flatfish metamorphosis is the most dramatic post-natal developmental event in teleosts. Thyroid hormones (TH), thyroxine (T4) and 3,3??-5??-triiodothyronine (T3) are the necessary and sufficient factors that induce and regulate flatfish metamorphosis. Most of the cellular and molecular action of TH is directed through the binding of T3 to thyroid nuclear receptors bound to promoters with consequent changes in the expression of target genes. The conversion of T4 to T3 and nuclear availability of T3 depends on the expression and activity of a family of 3 selenocysteine deiodinases that activate T4 into T3 or degrade T4 and T3. We have investigated the role of deiodinases in skin and muscle metamorphic changes in halibut. We show that, both at the whole body level and at the cellular level in muscle and skin of the Atlantic halibut (Hippoglossus hippoglossus) during metamorphosis, the coordination between activating (D2) and deactivating (D3) deiodinases expression is strongly correlated with the developmental TH-driven changes. The expression pattern of D2 and D3 in cells of both skin and muscle indicate that TH are necessary for the maintenance of larval metamorphic development and juvenile cell types in these tissues. No break in symmetry occurs in the expression of deiodinases and in metamorphic developmental changes occurring both in trunk skin and muscle. The findings that two of the major tissues in both larvae and juveniles maintain their symmetry throughout metamorphosis suggest that the asymmetric changes occurring during flatfish metamorphosis are restricted to the eye and head region.  相似文献   

9.
Summary Electrophoretic separation of hemoglobins of normalXenopus laevis and of isogenic animals derived from female hybrids ofXenopus laevis×Xenopus gilli revealed 5–9 components in premetamorphic larvae, and 3–4 components in adult toads. InXenopus laevis the number of larval hemoglobin components showed considerable variation, but this variation was absent in isogenic tadpoles, suggesting a genetic basis for hemoglobin polymorphism in larvae.Electrophoretic separation of larval and adult hemoglobins at different concentrations of acrylamide and treatment of these solutions with mercaptoethanol revealed that larval hemoglobin components are charge isomers, whereas adult hemoglobin was found to contain a minor dimeric component.Estimation of hemoglobin components showed that the main increase in adult hemoglobin, i.e from 30–90% of total hemoglobin, occurs within 4 weeks after completion of metamorphosis. By incroporation of3H amino acids in vivo a switch to preferential synthesis of adult hemoglobin and a corresponding decrease in larval hemoglobin production could be demonstrated during early climax stages. This suggests that thyroid hormones are involved in the hemoglobin transition. Yet chemical inhibition of the larval thyroid by thiourea resulted in a delayed but complete hemoglobin transition without morphological transformation. It is concluded that hemoglobin transition and morphological transformation of theXenopus tadpole require different concentrations of thyroid hormones.Abbreviations Hb hemoglobin - HbA adult hemoglobin - HbL larval hemoglobin  相似文献   

10.
Rabbit antibodies were prepared against the major hemoglobin components of the larval and adult stages of R. catesbeiana. The properties of the antisera were studied by double immunodiffusion, precipitation, and complement fixation. The antisera to tadpole and frog hemoglobins did not cross-react with either hemoglobin or apohemoglobin. The anti-serum against frog hemoglobin was used for the detection of frog hemoglobin in tadpoles undergoing either natural or thyroxine-induced metamorphosis. It was shown that frog hemoglobin is detectable first in the liver, indicating that the liver is the site of erythrocyte maturation during metamorphosis.  相似文献   

11.
Rabbit antibodies specific for the major tadpole and frog hemoglobin components of R. catesbeiana were used for the detection of the two hemoglobins inside single cells. The antisera, after fractionation by ammonium sulfate precipitation and diethylaminoethyl (DEAE)-cellulose chromatography, were conjugated with fluorescein isothiocyanate for the antifrog hemoglobin serum and tetramethylrhodamine isothiocyanate for the antitadpole hemoglobin serum. The conjugated fractions, refractionated by stepwise elution from a DEAE-cellulose column, were used for the fluorescent staining of blood smears, liver tissue imprints, and smears of liver cell suspensions. Both simultaneous and sequential staining with the two fluorescent preparations indicated that larval and adult hemoglobins were not present within the same erythrocyte during metamorphosis. In other experiments, erythroid cells from animals in metamorphosis were spread on agar containing specific antiserum. Precipitates were formed around the cells which contain the particular hemoglobin. The percentages of cells containing either tadpole or frog hemoglobin were estimated within the experimental error of the method. The data showed that the two hemoglobins are in different cells. It is concluded that the hemoglobin change observed during the metamorphosis of R. catesbeiana is due to the appearance of a new population of erythroid cells containing exclusively frog hemoglobin.  相似文献   

12.
The morphogenesis of serotonin- and FMRF-amide-bearing neuronal elements in the scaphopod Antalis entalis was investigated by means of antibody staining and confocal laser scanning microscopy. Nervous system development starts with the establishment of two initial, flask-like, serotonergic central cells of the larval apical organ. Slightly later, the apical organ contains four serotonergic central cells which are interconnected with two lateral serotonergic cells via lateral nerve projections. At the same time the anlage of the adult FMRF-amide-positive cerebral nervous system starts at the base of the apical organ. Subsequently, the entire neuronal complex migrates behind the prototroch and the six larval serotonergic cells lose transmitter expression prior to metamorphic competence. There are no strictly larval FMRF-amide-positive neuronal structures. The development of major adult FMRF-amide-containing components such as the cerebral system, the visceral loop, and the buccal nerve cords, however, starts before the onset of metamorphosis. The anlage of the putative cerebral system is the only site of adult serotonin expression in Antalis larvae. Establishment of the adult FMRF-amidergic and serotonergic neuronal bauplan proceeds rapidly after metamorphosis. Neurogenesis reflects the general observation that the larval phase and the expression of distinct larval morphological features are less pronounced in Scaphopoda than in Gastropoda or Bivalvia. The degeneration of the entire larval apical organ before metamorphic competence argues against an involvement of this sensory system in scaphopod metamorphosis. The lack of data on the neurogenesis in the aplacophoran taxa prevent a final conclusion regarding the plesiomorphic condition in the Mollusca. Nevertheless, the results presented herein shed doubts on general theories regarding possible functions of larval "apical organs" of Lophotrochozoa or even Metazoa.  相似文献   

13.
Patterns of metamorphosis and mechanisms of its regulation in primitive and advanced salamanders are compared. It is found that urodelan evolution was characterised by the following trends: 1) increase in the number of metamorphosing systems; 2) increase in the amplitude of metamorphic transformations of each particular system due to the progressive divergence of the larval and the adult morphology; 3) synchronization of metamorphic transformations and their concentration within a relatively short period of ontogeny; 4) increase in the role of the thyroid hormones (TH) in the regulation of metamorphosis. Structures that are induced by factors other than TH and develop independently of TH in primitive Urodela species acquire TH-dependence in phyletically more advanced salamanders. For instance, morphogenetic induction as a mechanism of ontogeny regulation is substituted by endocrine induction with TH as the inducing factor. The switch from morphogenetic to endocrine induction stimulates the following events: 1) optimization of ontogeny; 2) reduction of the metamorphosis duration; 3) formation of the dissociability of larval and post-metamorphic stages of ontogeny, which, in its turn, is a precondition for the swith to necrobiotic metamorphosis and to the direct development.  相似文献   

14.
Maturation of vertebrate neuromuscular systems typically occurs in a continuous, orderly progression. After an initial period of developmental adjustment by means of cell death and axonal pruning, relatively stable relationships, with only subtle modifications, are maintained between motoneurons and their appropriate targets throughout life. However, among a restricted group of vertebrates (amphibians and especially the anuran amphibians) the sequential maturation of neuromuscular systems is altered by an abrupt reordering of the basic body plan that encompasses cellular changes in all tissues from skeleton to nervous system. Many anuran amphibians possess neuromuscular circuits that are remarkable by virtue of their complete reorganization during the brief span of metamorphosis. During this period motor systems initially designed for the behavioral patterns of aquatic tadpoles are adjusted to meet the drastically different motor activities of postmetamorphic terrestrial life. This adjustment involves the deletion of neural elements mediating larval specific activities, the accelerated maturation of neural circuits eliciting adult-specific activities and the retrofitting of larval neuromuscular components to serve postmetamorphic behaviors. This review focuses on the cellular events associated with the neuromuscular adaptation in the jaw complex during metamorphosis of the leopard frog, Rana pipiens. As part of the metamorphic reorganization of the jaw apparatus there is a complete turnover of the myofiber complement of the adductor mandibulae musculature. Trigeminal motoneurons initially deployed to the larval myofibers are redirected to new muscle fibers. Simultaneously the cellular geometry and synaptic input to these motoneurons is revamped. These changes suggest that trigeminal neuromuscular circuitry established during embryogenesis is updated during metamorphosis and reused to provide the basis for adult jaw motor activity that is far different than its larval counterpart.  相似文献   

15.
Insect metamorphosis is a complex developmental transition determined and coordinated by hormonal signaling that begins at a critical weight late in the larval phase of life. Even though this hormonal signaling is well understood in insects, the internal factors that are assessed at the critical weight and that drive commitment to metamorphosis have remained unresolved in most species. The critical weight may represent either an autonomous decision by the neuroendocrine system without input from other developing larval tissues, or an assessment of developmental thresholds occurring throughout the body that are then integrated by the neuroendocrine tissues. The latter hypothesis predicts that there could be one or more developmental threshold signals that originate from developing tissues and ultimately induce the onset of metamorphosis. However, there is no evidence for such a signal in the organisms for which the critical weight is well described. Here we test for the evidence of this factor in Manduca sexta (Lepidoptera: Sphingidae) by transferring hemolymph from individuals that are either post- or pre-critical weight into pre-critical weight 5th instar larvae. We found that hemolymph from a post-critical weight donor induces a shortening of development time, though the mass at pupation is unaffected. This suggests that metamorphic commitment occurring at the critical weight is at least partially coordinated by signaling from developing tissues via a hemolymph-borne signaling factor.  相似文献   

16.
Heterochrony refers to those permutations in timing of differentiation events, and those changes in rates of growth and development through which morphological changes and novelties originate during phyletic evolution. This research analyzes morphological variation during the ontogeny of 18 different anuran species that inhabit semi-arid environments of the Chaco in South America. I use field data, collection samples, and anatomical methods to compare larval growth, and sequences of ontogenetic events. Most species present a similar pattern of larval development, with a size at metamorphosis related to the duration of larval period, and disappearance and transformations of larval features that occur in a short period between forelimb emergence and tail loss. Among these 18 species, Pseudis paradoxa has giant tadpole and long larval development that are the results of deviations of rates of growth. In this species events of differentiation that usually occur at postmetamorphic stages have an offset when tail is still present. Tadpoles of Lepidobatrachus spp. reach large sizes at metamorphosis by accelerate developmental rates and exhibit an early onset of metamorphic features. The uniqueness of the ontogeny of Lepidobatrachus indicates that evolution of anuran larval development may occasionally involve mid-metamorphic morphologies conserving a free feeding tadpole and reduction of the morphological-ecological differences between tadpoles and adults.  相似文献   

17.
1. Mosquito samples from the entire life span including senescence were analysed for weight, protein, RNA and DNA. 2. The results for each component indicate that maximal values are attained during larval development. No changes were observed during metamorphosis or the adult period. 3. The peak concentration of RNA and DNA was reached on the third day larval age. Protein content and weight were highest on the sixth day. 4. Except for the first 2 days of larval life the DNA/protein ratio was constant. Hence protein content is an index of cell number for this organism. 5. The distribution of the different biochemical components was determined in different body regions and in subcellular fractions. A high concentration of DNA was found in the soluble fraction of larval but not adult homogenates.  相似文献   

18.
This study investigates the effect of developmental stage on thyroid hormone (TH)-mediated remodeling in the skeletal tissues of hemidactyliine plethodontid urodeles. Rate of morphogenesis was quantified in 17 metamorphic tissues for three different size-age classes of Eurycea bislineata larvae immersed in a metamorphic dosage of T4. Extent of morphogenesis after a 3-week immersion was also quantified in these tissues plus four larval ones for the full size range of E. bislineata larvae and for less complete size ranges of E. wilderae, E. longicauda guttolineata, Gyrinophilus porphyriticus, and Pseudotriton ruber larvae. Although all tissues respond more slowly with decreasing size/age, two tissue-specific effects are evident in all species. Larval ossifications are less inducible than metamorphic ossifications, and progressive metamorphic events are more retarded and, in some cases, more prone to abnormal morphogenesis than regressive ones. The first effect agrees with the prediction that tissues that naturally remodel at metamorphosis are more responsive to a metamorphic dosage of TH than those that respond at a larval stage and lower TH. The second effect agrees with the prediction that progressive morphogenesis is more likely to be impaired at small size than regressive morphogenesis, although the frequent discrepancies between individuals of similar size implicate developmental age more than size in this effect. Collectively, these two effects provide only equivocal support for the hypothesis that direct development in plethodontids evolved via precocious TH activity. However, the unexpected transition from ceratobranchial replacement to ceratobranchial shortening in medium-sized larvae suggests that the former pathway requires a longer period of cell specification at low TH. Since ancestral plethodontids appear to have been distinguished by an exceptionally long larval period with exceptionally low TH activity, this developmental prerequisite may in turn be partly responsible for their singular evolution of ceratobranchial replacement. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The gastropod nervous system in metamorphosis   总被引:2,自引:0,他引:2  
Many gastropods, including the sea hare Aplysia californica, undergo metamorphosis in passing from the larval to the juvenile phases of their life cycle. During metamorphosis, the gastropod nervous system is affected by both progressive and regressive neuronal events. In addition to this metamorphic reorganization, the nervous system appears to be centrally involved in initiating metamorphosis. We propose that gastropods not only possess temporally distinct neuronal adaptations for the specific needs of the larval and juvenile phases, but also another transient neuronal adaptation specialized to subserve the metamorphic episode.  相似文献   

20.
《Developmental biology》1986,117(1):233-244
The metamorphosis of the epibranchial—a skeletal element of the hyobranchial apparatus—is characterized by the degeneration of the larval cartilaginous element coupled with the formation of an adult cartilage in the same position. By integrating histological evidence from serial sections, in toto clearing and staining, TEM, SEM, and [3H]thymidine autoradiography, we found that larval chondrocytes die and do not participate in the formation of the adult cartilage. Meanwhile, the adult element forms from a small group of cells located in the mid-ventral region of the larval perichondrium. At the onset of metamorphosis, this group of perichondral cells begins to proliferate and they assume a mesenchymal morphology to subsequently undergo chondrogenesis. Although we only document a specific case, we believe that this process of apportionment of prospective larval and adult cell development is characteristic of highly specialized metamorphic systems in all groups. In general, differentiation is an irreversible process and larval cells once part of a differentiated tissue cannot dedifferentiate and participate in the formation of a new adult structure. To circumvent this constraint during the evolution of divergent larval and adult morphologies, organisms have evolved compartmentalized metamorphic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号