首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

Amyotrophic lateral sclerosis (ALS)-linked fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is concentrated within cytoplasmic stress granules under conditions of induced stress. Since only the mutants, but not the endogenous wild-type FUS, are associated with stress granules under most of the stress conditions reported to date, the relationship between FUS and stress granules represents a mutant-specific phenotype and thus may be of significance in mutant-induced pathogenesis. While the association of mutant-FUS with stress granules is well established, the effect of the mutant protein on stress granules has not been examined. Here we investigated the effect of mutant-FUS on stress granule formation and dynamics under conditions of oxidative stress.

Results

We found that expression of mutant-FUS delays the assembly of stress granules. However, once stress granules containing mutant-FUS are formed, they are more dynamic, larger and more abundant compared to stress granules lacking FUS. Once stress is removed, stress granules disassemble more rapidly in cells expressing mutant-FUS. These effects directly correlate with the degree of mutant-FUS cytoplasmic localization, which is induced by mutations in the nuclear localization signal of the protein. We also determine that the RGG domains within FUS play a key role in its association to stress granules. While there has been speculation that arginine methylation within these RGG domains modulates the incorporation of FUS into stress granules, our results demonstrate that this post-translational modification is not involved.

Conclusions

Our results indicate that mutant-FUS alters the dynamic properties of stress granules, which is consistent with a gain-of-toxic mechanism for mutant-FUS in stress granule assembly and cellular stress response.
  相似文献   

4.
Fused in sarcoma (FUS) is a nuclear protein that carries a proline‐tyrosine nuclear localization signal (PY‐NLS) and is imported into the nucleus via Transportin (TRN). Defects in nuclear import of FUS have been implicated in neurodegeneration, since mutations in the PY‐NLS of FUS cause amyotrophic lateral sclerosis (ALS). Moreover, FUS is deposited in the cytosol in a subset of frontotemporal lobar degeneration (FTLD) patients. Here, we show that arginine methylation modulates nuclear import of FUS via a novel TRN‐binding epitope. Chemical or genetic inhibition of arginine methylation restores TRN‐mediated nuclear import of ALS‐associated FUS mutants. The unmethylated arginine–glycine–glycine domain preceding the PY‐NLS interacts with TRN and arginine methylation in this domain reduces TRN binding. Inclusions in ALS‐FUS patients contain methylated FUS, while inclusions in FTLD‐FUS patients are not methylated. Together with recent findings that FUS co‐aggregates with two related proteins of the FET family and TRN in FTLD‐FUS but not in ALS‐FUS, our study provides evidence that these two diseases may be initiated by distinct pathomechanisms and implicates alterations in arginine methylation in pathogenesis.  相似文献   

5.
6.
7.
8.
9.
10.
Most cellular organelles are positioned through active transport by motor proteins. The authors discuss the evidence that dynein has important cell cycle-regulated functions in this context at the nuclear envelope.Most cellular organelles are positioned through active transport by motor proteins. This is especially important during cell division, a time when the organelles and genetic content need to be divided equally between the two daughter cells. Although individual proteins can attain their correct location by diffusion, larger structures are usually positioned through active transport by motor proteins. The main motor that transports cargoes to the minus ends of the microtubules is dynein. In nondividing cells, dynein probably transports or positions the nucleus inside the cells by binding to the nuclear envelope (NE; Burke & Roux, 2009). However, it appears that dynein also has important cell-cycle-regulated functions at the NE, as it is recruited to the NE every cell cycle just before cells enter mitosis (Salina et al, 2002; Splinter et al, 2010). Here, we discuss why dynein might be recruited to the NE for a brief period before mitosis.During late G2 or prophase the centrosomes separate to opposite sides of the nucleus, but remain closely associated with the NE during separation. This close association is probably mediated through NE-bound dynein, which ‘walks'' towards the minus ends of centrosomal microtubules, thereby pulling centrosomes towards the NE (Splinter et al, 2010; Gonczy et al, 1999; Robinson et al, 1999). We speculate that close association of centrosomes to the NE might have several functions. First, if centrosomes are not mechanically coupled to the NE, centrosome movement during separation will occur in random directions and chromosomes will not end up between the two separated centrosomes. In this scenario, individual kinetochores might attach more frequently to microtubules coming from both centrosomes (merotelic attachments), a defect that can result in aneuploidy, a characteristic of cancer. Second, centrosome-nuclear attachment also keeps centrosomes in close proximity to chromosomes, which might facilitate rapid capture of chromosomes by microtubules nucleated by the centrosomes after NE breakdown. This might not be absolutely essential, as chromosome alignment can occur in the absence of centrosomes. However, the spatial proximity of centrosomes and chromosomes at NE breakdown might improve the fidelity of kinetochore capture and chromosome alignment.In addition, dynein has also been suggested to promote centrosome separation in prophase in some systems (Gonczy et al, 1999; Robinson et al, 1999; Vaisberg et al, 1993), although not in others (Tanenbaum et al, 2008). Perhaps dynein, anchored at the NE just before mitosis, could exert force on microtubules emanating from both centrosomes, thereby pulling centrosomes apart. However, this force could also be produced by cortical dynein and specific inhibition of NE-associated or cortical dynein will be required to test which pool is responsible.Dynein has also been implicated in the process of NE breakdown itself, by promoting mechanical shearing of the NE. Two elegant studies showed that microtubules can tear the NE as cells enter mitosis (Salina et al, 2002; Beaudouin et al, 2002). One possibility is that microtubules growing into the NE mechanically disrupt it. Alternatively, NE-associated dynein might ‘walk'' along centrosomal microtubules and thereby pull on the NE, tearing it apart. However, testing the exact role of dynein in NE breakdown is complicated by the fact that centrosomes detach from the NE on inactivation of dynein and centrosomal microtubules stop growing efficiently into the NE. Thus, selective inhibition of dynein function will also be required to test this idea.Specific recruitment of dynein to the NE just before mitosis clearly suggests a role for dynein at the NE in preparing cells for mitosis. A major role of NE-associated dynein is to maintain close association of centrosomes with the NE during centrosome separation, which might be needed for efficient capture and alignment of chromosomes after NE breakdown, but additionally, NE-associated dynein could facilitate breakdown and contribute to centrosome separation in some systems.  相似文献   

11.
EMBO J 31 3, 552–562 (2012); published online December132011The Basal Body (BB) acts as the template for the axoneme, the microtubule-based structure of cilia and flagella. Although several proteins were recently implicated in both centriole and BB assembly and function, their molecular mechanisms are still poorly characterized. In this issue of The EMBO journal, Li and coworkers describe for the first time the near-native structure of the BB at 33 Å resolution obtained by Cryo-Electron Microscopy analysis of wild-type (WT) isolated Chlamydomonas BBs. They identified several uncharacterized non-tubulin structures and variations along the length of the BB, which likely reflect the binding and function of numerous macromolecular complexes. These complexes are expected to define BB intrinsic properties, such as its characteristic structure and stability. Similarly to the high-resolution structures of ribosome and nuclear pore complexes, this study will undoubtedly contribute towards the future analysis of centriole and BB biogenesis, maintenance and function.The microtubule (MT)-based structure of the cilium/flagellum grows from the distal part of the Basal Body (BB), which in many animal cells develops from the mature centriole in the centrosome. Electron microscopic (EM) images of chemically fixed resin-embedded centrioles and basal bodies (CBBs) suggest that their ultrastructure is similar, and that their key components are MTs. The mechanisms underlying the organization of CBB MTs, comprising highly stable closed and open MTs, are likely to hold many surprises as they are remarkably different from other microtubular structures in the cell. Additionally, non-MT-based structures are also part of the CBB, including a cartwheel in the proximal lumen region that reinforces CBB symmetry (reviewed in Azimzadeh and Marshall, 2010 and Carvalho-Santos et al, 2011).Several centriole components and BB proteins were identified by comparative and/or functional genomics and proteomics studies of purified CBBs (reviewed in Azimzadeh and Marshall, 2010 and Carvalho-Santos et al, 2011). Advances in our understanding of the molecular mechanisms of CBB assembly depend on high-resolution comparative studies of wild-type (WT) and mutant structures, as well as characterization of the localization of molecular complexes within the small CBB structure. Despite the existence of beautiful ultrastructure data acquired from chemically fixed specimens (Geimer and Melkonian, 2004; Ibrahim et al, 2009), high-resolution structures of native CBBs were missing. Using electron cryo-tomography and 3D subtomogram averaging, Li et al (2012) solved the structure of the near-native BB triplet at 33 Å resolution. A pseudo-atomic model of the tubulin protofilaments at the core of the triplets was built by fitting the atomic structure of α/β-tubulin monomers into the BB tomograms.The 3D density map reveals several additional densities that represent non-tubulin proteins attached, both internally and externally, to all triplet MTs, some linking MTs inside the triplets and/or MTs in consecutive triplets (Li et al, 2012; for a summary, see Li et al, 2012; Geimer and Melkonian, 2004; Ibrahim et al, 2009), but with less detail and complexity. The authors speculate that some of the additional densities present at the A- and B-tubule inner wall might correspond to proteins of the tektin family, probably conferring rigidity to the BB triplet (Amos, 2008).

Table 1

Characteristics of the non-α/β-tubulin structures reported in Li et al (2012) in this issue of The EMBO journal
Open in a separate windowThe authors also show that the BB proximal and distal structures are significantly different. The majority of the changes are confined to (1) the C-tubule, (2) linkers between the adjacent triplets and (3) the twist angle of the triplets along the BB length (Li et al, 2012; Figure 1). It is possible that together with the cartwheel, the linkers between consecutive triplets contribute to establishing and reinforcing the CBB nine-fold symmetry, by defining the angles between triplets and in consequence the available space to fit these MTs. The authors also propose that the structural variations along the length of the BB suggest a sequential and coordinated BB assembly process. It will be important to obtain high-resolution structures of the growing WT CBB and of mutants in genes associated with CBB stability and elongation, such as δ-tubulin, POC5, CPAP, POC1 and Bld10 (reviewed in Azimzadeh and Marshall, 2010 and Carvalho-Santos et al, 2011) to complement previous work (Pelletier et al, 2006; Guichard et al, 2010) and to unveil CBB assembly mechanisms.Open in a separate windowFigure 1Proximal and distal views of the reconstructed basal body model. MT triplets are represented in blue and non-tubulin proteins attached to the triplets are represented in yellow. Note the structural differences between the proximal and distal regions of the BB at the level of the C-tubule and non-tubulin structures. Lower images represent 3 × magnified view of the box marked area; white arrowheads—indicate the changes in the C-Tubule configuration; black arrowheads—indicate changes in the non-MT structures. Distal view is mirrored to facilitate the comparison with proximal view. Images were kindly provided by Sam Li.A comparison of the BB structure with that of the axoneme (resolved at 30 Å; Sui and Downing, 2006) revealed that the distribution of the accessory structures on the outer and inner surface of the A- and B-tubules of the BB triplet are different from the axonemal doublet MTs for which they serve as template (Li et al, 2012). It will be important in the future to understand what those differences mean for CBB and axoneme function, including links with pericentriolar components and motility.The high-resolution structure of ribosome and nuclear pore complexes, solved by single particle reconstruction electron cryo-tomography, contributed immensely to our knowledge on these organelles assembly and function (reviewed in Ramakrishnan, 2009 and Ben-Harush et al, 2010). The BB high-resolution structural analysis reported in this article (Li et al, 2012) will certainly pave the road for the identification of essential non-MT BB components, and allow us to understand their molecular role in the context of CBB biogenesis, maintenance and function.  相似文献   

12.
13.
14.
EMBO J 32: 2905–2919 10.1038/emboj.2013.199; published online September032013Some B cells of the adaptive immune system secrete polyreactive immunoglobulin G (IgG) in the absence of immunization or infection. Owing to its limited affinity and specificity, this natural IgG is thought to play a modest protective role. In this issue, a report reveals that natural IgG binds to microbes following their opsonization by ficolin and mannan-binding lectin (MBL), two carbohydrate receptors of the innate immune system. The interaction of natural IgG with ficolins and MBL protects against pathogenic bacteria via a complement-independent mechanism that involves IgG receptor FcγRI expressing macrophages. Thus, natural IgG enhances immunity by adopting a defensive strategy that crossovers the conventional boundaries between innate and adaptive microbial recognition systems.The adaptive immune system generates protective somatically recombined antibodies through a T cell-dependent (TD) pathway that involves follicular B cells. After recognizing antigen through the B-cell receptor (BCR), follicular B cells establish a cognate interaction with CD4+ T follicular helper (TFH) cells and thereafter either rapidly differentiate into short-lived IgM-secreting plasmablasts or enter the germinal centre (GC) of lymphoid follicles to complete class switch recombination (CSR) and somatic hypermutation (SHM) (Victora and Nussenzweig, 2012). CSR from IgM to IgG, IgA and IgE generates antibodies with novel effector functions, whereas SHM provides the structural correlate for the induction of affinity maturation (Victora and Nussenzweig, 2012). Eventually, this canonical TD pathway generates long-lived bone marrow plasma cells and circulating memory B cells that produce protective class-switched antibodies capable to recognize specific antigens with high affinity (Victora and Nussenzweig, 2012).In addition to post-immune monoreactive antibodies, B cells produce pre-immune polyreactive antibodies in the absence of conventional antigenic stimulation (Ehrenstein and Notley, 2010). These natural antibodies form a vast and stable repertoire that recognizes both non-protein and protein antigens with low affinity (Ehrenstein and Notley, 2010). Natural antibodies usually emerge from a T cell-independent (TI) pathway that involves innate-like B-1 and marginal zone (MZ) B cells. These are extrafollicular B-cell subsets that rapidly differentiate into short-lived antibody-secreting plasmablasts after detecting highly conserved microbial and autologus antigens through polyreactive BCRs and nonspecific germline-encoded pattern recognition receptors (Pone et al, 2012; Cerutti et al, 2013).The most studied natural antibody is IgM, a pentameric complement-activating molecule with high avidity but low affinity for antigen (Ehrenstein and Notley, 2010). In addition to promoting the initial clearance of intruding microbes, natural IgM regulates tissue homeostasis, immunological tolerance and tumour surveillance (Ochsenbein et al, 1999; Zhou et al, 2007; Ehrenstein and Notley, 2010). Besides secreting IgM, B-1 and MZ B cells produce IgG and IgA after receiving CSR-inducing signals from dendritic cells (DCs), macrophages and neutrophils of the innate immune system (Cohen and Norins, 1966; Cerutti et al, 2013). In humans, certain natural IgG and IgA are moderately mutated and show some specificity, which may reflect the ability of human MZ B cells to undergo SHM (Cerutti et al, 2013). Yet, natural IgG and IgA are generally perceived as functionally quiescent.In this issue, Panda et al show that natural IgG bound to a broad spectrum of bacteria with high affinity by cooperating with ficolin and MBL (Panda et al, 2013), two ancestral soluble lectins of the innate immune system (Holmskov et al, 2003). This binding involved some degree of specificity, because it required the presence of ficolin or MBL on the microbial surface as well as lower pH and decreased calcium concentration in the extracellular environment as a result of infection or inflammation (see Figure 1).Open in a separate windowFigure 1Ficolins and MBL are produced by hepatocytes and various cells of the innate immune system and opsonize bacteria after recognizing conserved carbohydrates. Low pH and calcium concentrations present under infection-inflammation conditions promote the interaction of ficolin or MBL with natural IgG on the surface of bacteria. The resulting immunocomplex is efficiently phagocytosed by macrophages through FcγR1 independently of the complement protein C3, leading to the clearance of bacteria.Ficolins and MBL are soluble pattern recognition receptors that opsonize microbes after binding to glycoconjugates through distinct carbohydrate recognition domain (CRD) structures (Holmskov et al, 2003). While ficolins use a fibrinogen domain, MBL and other members of the collectin family use a C-type lectin domain attached to a collagen-like region (Holmskov et al, 2003). Similar to pentraxins, ficolins and MBL are released by innate effector cells and hepatocytes, and thus may have served as ancestral antibody-like molecules prior to the inception of the adaptive immune system (Holmskov et al, 2003; Bottazzi et al, 2010). Of note, MBL and the MBL-like complement protein C1q are recruited by natural IgM to mediate complement-dependent clearance of autologous apoptotic cells and microbes (Holmskov et al, 2003; Ehrenstein and Notley, 2010). Panda et al found that a similar lectin-dependent co-optation strategy enhances the protective properties of natural IgG (Panda et al, 2013).By using bacteria and the bacterial glycan N-acetylglicosamine, Panda et al show that natural IgG isolated from human serum or T cell-deficient mice interacted with the fibrinogen domain of microbe-associated ficolins (Panda et al, 2013). The resulting immunocomplex was phagocytosed by macrophages via the IgG receptor FcγRI in a complement-independent manner (Panda et al, 2013). The additional involvement of MBL was demonstrated by experiments showing that natural IgG retained some bacteria-binding activity in the absence of ficolins (Panda et al, 2013).Surface plasmon resonance provided some clues regarding the molecular requirements of the ficolin–IgG interaction (Panda et al, 2013), but the conformational changes required by ficolin to interact with natural IgG remain to be addressed. In particular, it is unclear what segment of the effector Fc domain of natural IgG binds to ficolins and whether Fc-associated glycans are involved in this binding. Specific glycans have been recently shown to mitigate the inflammatory properties of IgG emerging from TI responses (Hess et al, 2013) and this process could implicate ficolins and MBL. Moreover, it would be important to elucidate whether and how the antigen-binding Fab portion of natural IgG regulates its interaction with ficolins and MBL.The in vivo protective role of natural IgG was elegantly demonstrated by showing that reconstitution of IgG-deficient mice lacking the CSR-enzyme activation-induced cytidine deaminase with natural IgG from T cell-insufficient animals enhanced resistance to pathogenic Pseudomonas aeruginosa (Panda et al, 2013). This protective effect was associated with reduced production of proinflammatory cytokines, occurred independently of the complement protein C3 and was impaired by peptides capable to inhibit the binding of natural IgG to ficolin (Panda et al, 2013). Additional in vivo studies will be needed to determine whether natural IgG exerts protective activity in mice lacking ficolin, MBL or FcγRI, and to ascertain whether these molecules also enhance the protective properties of canonical or natural IgG and IgA released by bone marrow plasma cells and mucosal plasma cells, respectively.In conclusion, the findings by Panda et al show that natural IgG adopts ‘crossover'' defensive strategies that blur the conventional boundaries between the innate and adaptive immune systems. The sophisticated integration of somatically recombined and germline-encoded antigen recognition systems described in this new study shall stimulate immunologists to further explore the often underestimated protective virtues of our vast natural antibody repertoire. This effort may lead to the development of novel therapies against infections.  相似文献   

15.
16.
17.
EMBO J 32 15, 2099–2112 doi:10.1038/emboj.2013.125; published online May312013Mutations in Parkin represent ∼50% of disease-causing defects in autosomal recessive-juvenile onset Parkinson''s disease (AR-JP). Recently, there have been four structural reports of autoinhibited forms of this RING-IBR-RING (RBR) ubiquitin ligase (E3) by the Gehring, Komander, Johnston and Shaw groups. The important advances from these studies set the stage for the next steps in understanding the molecular basis for Parkinson''s disease (PD).Regulated protein degradation requires that E3s and their access to substrates be exquisitely controlled. RBR family E3s provide striking examples of this regulation. The complex and compact structures of Parkin (Riley et al, 2013; Spratt et al, 2013; Trempe et al, 2013; Wauer and Komander, 2013) as well as another RBR E3, human homologue of Ariadne (HHARI) (Duda et al, 2013), demonstrate extraordinarily intricate inter-domain arrangements. These autoinhibited structures ensure that their functions are restricted until activated.Until recently, RBR E3s were believed to be a subclass of RING E3s, which allosterically activate E2 conjugated with ubiquitin (E2∼Ub). However, Wenzel et al (2011) determined that they are actually hybrid E3s, containing an E2 binding site in RING1 and a catalytic cysteine residue in the domain designated as RING2. The catalytic cysteine is an acceptor for an ubiquitin from RING1-bound E2∼Ub forming an intermediate (E3∼Ub) that leads to substrate or autoubiquitination. In this way, RBRs resemble HECT E3s, which also form catalytic intermediates in ubiquitination. There are 13 human RBR family E3s. Besides Parkin, two notable RBRs are HOIL-1 and HOIP, which form part of a complex integral to NF-κB activation (Wenzel and Klevit, 2012).In addition to causal roles in AR-JP, single allele mutations of Parkin are found in some sporadic cases of PD (references in Wauer and Komander, 2013). Mutations in the Parkin-associated kinase PINK1, which is upstream of Parkin, also account for a significant number of AR-JP cases (Hardy et al, 2009; Narendra et al, 2012; Lazarou et al, 2013). A number of diverse Parkin substrates have been postulated to be associated with PD. There is substantial evidence that one role for Parkin is at mitochondria. Once activated and recruited to damaged/depolarized mitochondria by PINK1, it ubiquitinates exposed mitochondrial proteins leading to both proteasomal degradation and mitophagy (Narendra et al, 2012; Sarraf et al, 2013). Parkin has also been implicated in cell surface signalling and as a tumour suppressor (see references in Wauer and Komander, 2013).Parkin encodes five structured domains, beginning with an N-terminal ubiquitin-like domain (UbLD) and followed by four domains that each bind two zinc (Zn) atoms (Figure 1A). The most N-terminal of the Zn-binding domains is RING0. C-terminal to this is the RBR, consisting of RING1, the IBR and RING2. The crystal structures of inactive Parkin from Riley et al (2013), Trempe et al (2013) and Wauer and Komander (2013) show remarkable congruity. Spatially, the IBR is at the complete opposite end of the molecule from RING2, to which it is connected by a partially unstructured ∼37 residue linker. This linker includes a two-turn helix, referred to as the repressor element of Parkin (REP) or tether, which binds and occludes the E2 binding face of RING1. RING1 occupies the central position in these structures, and RING0 separates RING1 from RING2 (Figure 1B and C). The latter contains the residue identified by Wenzel et al (2011), and confirmed by all three groups, to be the catalytic cysteine, C431. A lower resolution structure also includes the UbLD and places this domain adjacent to RING1 (Trempe et al, 2013). A second unstructured linker connects the UbLD and RING0. UbLDs are involved in a number of protein–protein interactions and small angle X-ray scattering confirms that this domain is integral to the core structure of Parkin (Spratt et al, 2013; Trempe et al, 2013). Biophysical characterization of Parkin and HHARI suggests that each is a monomer in solution.Open in a separate windowFigure 1Schematic and spatial representation of Parkin. (A) Primary structure and domain designations of Parkin, including the REP sequence within the otherwise unstructured IBR-RING2 linker. (B) Structural representation of full-length Parkin (PDB 4K95) highlighting the complex domain interactions in the three-dimensional structure, the catalytic C431 residue, and residue W403 within the REP, which plays a role in stabilizing the autoinhibited form of Parkin. (C) A model of Parkin with the E2 UbcH5B/Ube2D2 bound (devised using PDB 4K95 and PDB 4AP4 to mimic the position of an E2 bound to RING1) to illustrate the required displacement of UbLD and REP and the large distance between the E2∼Ub attachment site of the E2 and the catalytic active site of Parkin. Note that in this conformation the catalytic Cys within RING2 (C431) remains buried by RING0.RING1 is the only bona fide RING domain. All NMR and crystal structures of IBR domains from Parkin, HHARI and HOIP (PDB ID: 2CT7) are in good agreement. The Parkin and HHARI RING2s are structurally highly homologous and share a common Zn-coordinating arrangement with IBR domains. In contrast to the IBR and RING2, RING0 has a distinct arrangement of Zn-coordinating residues (Beasley et al, 2007; Duda et al, 2013; Riley et al, 2013; Spratt et al, 2013; Trempe et al, 2013; Wauer and Komander, 2013) (see Figure 1F of Trempe et al (2013) for the various Zn coordination arrangements).All of the Parkin crystal structures represent inactive forms of the E3. This is imposed by the quaternary positioning of the domains, which precludes activity in multiple ways. RING0 plays two obvious roles to maintain Parkin in an inactive state. RING0 shares an interface with RING2 and buries C431, making it unavailable as an ubiquitin acceptor. Moreover, RING0 intervenes between RING1 and RING2, creating an insurmountable separation of >50 Å between the active site Cys of an E2 bound to RING1 and C431 (Figure 1B and C). Thus, RING0 must be displaced for ubiquitin transfer to occur. Accordingly, deletion of RING0 results in a marked increase in Parkin autoubiquitination and in C431 reactivity (Riley et al, 2013; Trempe et al, 2013; Wauer and Komander, 2013). In HHARI, these two inhibitory functions are fulfilled by the C-terminal Ariadne domain, which similarly interposes between RING1 and RING2 (Duda et al, 2013).Additional inhibition is provided by the REP, which binds to RING1 at the canonical RING-E2 binding site and prevents E2 binding. This provides at least a partial explanation for the impaired ability of Parkin to bind E2 when compared to HHARI, which lacks this element (Duda et al, 2013). A disease-associated REP mutant (A398T) at the RING1 interface increases autoubiquitination (Wauer and Komander, 2013). The significance of inhibition by REP-RING1 binding was verified by mutating a critical RING1-interacting REP residue (W403A). This increased autoubiquitination and E2 binding (Trempe et al, 2013). Consistent with the requirement for charging C431 with ubiquitin in mitochondrial translocation (Lazarou et al, 2013), Parkin association with depolarized mitochondria is accelerated with this mutation (Trempe et al, 2013). Interestingly, W403 also interacts with the C-terminal Val of Parkin within RING2, and could therefore potentially further stabilize the autoinhibited form of the protein (Riley et al, 2013), consistent with previous observations (Henn et al, 2005).The quaternary structure of full-length Parkin also suggests that displacement of its N-terminal UbLD must occur for full activation (Trempe et al, 2013). The positioning of the UbLD adjacent to RING1 indicates that it would provide a steric impediment to E2∼Ub binding (Figure 1B and C). Additionally, displacement of the UbLD could be important to relieve interactions with the IBR-RING2 linker, which, as suggested in a previous study (Chaugule et al, 2011), might help to maintain Parkin in an inactive state. Finally, the crystal structure of the full-length Parkin indicates that the UbLD is not available for interactions with other proteins. This would limit Parkin''s range of intermolecular interactions.RBR E3s have at least two domains critical for sequential ubiquitin transfer and full activity, RING1 and RING2. The RING1 of Parkin, as well as all other RBR E3s, is notable in lacking the basic residue in the second Zn coordinating loop (or its equivalent in U-box proteins), which has recently been implicated in RING-mediated transfer of Ub from E2∼Ub (Metzger et al, 2013). This suggests that other factors play compensatory roles in positioning ubiquitin for transfer from E2∼Ub to C431. A non-mutually exclusive possibility is that the lack of this basic residue in RING1 limits unwanted attack on the E2∼Ub linkage, thereby minimizing the unregulated ubiquitination. Turning to RING2, the area surrounding the active site C431 of Parkin is notable in that it includes a sequence recognizable as a catalytic triad, similar to that in deubiquitinating enzymes. The Cys-His-Glu grouping, found in Parkin and other RBR E3s, contributes to in vitro activity (Riley et al, 2013; Wauer and Komander, 2013). Interestingly, however, the Glu was dispensable in a cellular assay (Riley et al, 2013). This triad is conserved in HHARI, where an Asn between the Cys and His residues (found in a number of RBRs but not conserved in Parkin), was found to be important for catalysis (Duda et al, 2013).The advances made in these studies impart significant information about an important and clinically relevant E3. However, Parkin, as well as HHARI, has been captured in their inactive, unmodified forms. One obvious question is how does Parkin transition between inactive and active states. PINK1 is implicated in phosphorylating Parkin on its UbLD and potentially other sites, with evidence that phosphorylation contributes to Parkin activation (Narendra et al, 2012). How phosphorylation could contribute to protein interactions that might facilitate Parkin activation, potentially including Parkin oligomerization (Lazarou et al, 2013), is unknown. Regardless, it is evident that considerable unwinding of its quaternary structure must take place.While there is much work ahead to understand these processes, one important interface that must be disrupted for activation is that between the REP and RING1. It is intriguing to consider that such interruption might be associated with other alterations in the IBR-RING2 linker, potentially facilitating the movement of the UbLD from RING1 and contributing to activation. Related to activation is the all-important question of how Parkin recognizes and targets specific substrates. While the UbLD represents a potential site of interaction, most purported substrates are not known to have UbLD-interaction domains. Although interactions involving the UbLD could occur indirectly, through bridging molecules, there is also evidence that other regions of Parkin, including the RBR region, might recognize substrates either directly or indirectly (Tsai et al, 2003) and that some substrates may be phosphorylated by PINK1 (Narendra et al, 2012). Conformational changes induced by substrate interactions, particularly in the IBR RING2 linker, could, as above, represent an important aspect of activation.There are over 75 missense mutations of Parkin associated with AR-JP, most of these inactivate the protein, but there are also some that are activating (Wauer and Komander, 2013). Activating mutations presumably result in pathology at least partially as a consequence of increased autoubiquitination and degradation (e.g., A398T). The current studies help to provide a classification of missense mutations into those that affect (i) folding or stability, (ii) catalytic mechanism, and (iii) interactions between domains. Interdomain mutations might inactivate or contribute to constitutive activation leading to autoubiquitination and degradation.Finally, we know little about how the autosomal recessive and the much more prevalent sporadic forms of PD overlap in their molecular pathology. However, mitochondrial dysfunction is increasingly a common theme. Thus, with the structure of the inactive protein in hand, there is hope that we can begin to consider ways in which domain interactions might be altered in a controlled manner to activate, but not hyperactivate, this critical E3 and lessen the progression of PD.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号