首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Filamentous phytopathogens, such as fungi and oomycetes, secrete effector proteins to establish successful interactions with their plant hosts. In contrast with oomycetes, little is known about effector functions in true fungi. We used a bioinformatics pipeline to identify Blumeria effector candidates (BECs) from the obligate biotrophic barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). BEC1BEC5 are expressed at different time points during barley infection. BEC1, BEC2 and BEC4 have orthologues in the Arabidopsis thaliana‐infecting powdery mildew fungus Golovinomyces orontii. Arabidopsis lines stably expressing the G. orontii BEC2 orthologue, GoEC2, are more susceptible to infection with the non‐adapted fungus Erysiphe pisi, suggesting that GoEC2 contributes to powdery mildew virulence. For BEC3 and BEC4, we identified thiopurine methyltransferase, a ubiquitin‐conjugating enzyme, and an ADP ribosylation factor‐GTPase‐activating protein (ARF‐GAP) as potential host targets. Arabidopsis knockout lines of the respective HvARF‐GAP orthologue (AtAGD5) allowed higher entry levels of E. pisi, but exhibited elevated resistance to the oomycete Hyaloperonospora arabidopsidis. We hypothesize that ARF‐GAP proteins are conserved targets of powdery and downy mildew effectors, and we speculate that BEC4 might interfere with defence‐associated host vesicle trafficking.  相似文献   

3.
4.
Barley plants carrying a mutation in the Mlo (barley [Hordeum vulgare L.] cultivar Ingrid) locus conferring a durable resistance against powdery mildew are hypersusceptible to the rice blast fungus Magnaporthe grisea. It has been speculated that a functional Mlo gene is required for the expression of basic pathogen resistance and that the loss of Mlo function mediating powdery mildew resistance is an exception for this particular disease. Here, we report that the onset of acquired resistance (AR) after chemical as well as biological treatments is sufficient to overcome the hypersusceptible phenotype of backcross line BCIngridmlo5 (mlo) barley plants against M. grisea. Moreover, even barley plants bearing a functional Mlo gene and thus showing a moderate infection phenotype against rice blast exhibit a further enhanced resistance after induction of AR. Cytological investigations reveal that acquired resistance in mlo genotypes is manifested by the restoration of the ability to form an effective papilla at sites of attempted penetration, similarly to wild-type Mlo plants. In addition, the rate of effective papillae formation in Mlo plants was further enhanced after the onset of AR. These results demonstrate that treatments leading to the AR state in barley function independently of the Mlo/mlo phenotype and suggest that the Mlo protein is not a component of the AR signaling network. Moreover, it seems that only concomitant action of Mlo together with AR permits high level resistance in barley against blast. Higher steady state levels of PR1 and barley chemically induced mRNA correlate with higher disease severity rather than with the degree of resistance observed in this particular interaction.  相似文献   

5.
A single nucleotide polymorphism in the wheat powdery mildew (Blumeria graminis f. sp. tritici) cytochrome b gene is responsible for resistance to inhibitors of the quinol outer binding site of the cytochrome bc1 complex (QoI) fungicides. Analysis of a partial sequence of the cytochrome b gene from field isolates resistant and sensitive to QoI fungicides revealed the same point mutation in barley powdery mildew (B. graminis f. sp. hordei). Analysis of 118 and 40 barley powdery mildew isolates using a cleaved amplified polymorphic sequence assay and denaturing high performance liquid chromatography, respectively, confirmed that this single nucleotide polymorphism also confers resistance to QoI fungicides in barley powdery mildew.  相似文献   

6.
7.
大麦抗白粉病基因Mlo的研究进展   总被引:10,自引:0,他引:10  
野生型Mlo基因是大麦抗白粉病的负调控因子,该基因突变,赋予大麦对白粉菌的广谱抗性。综述了Mlo基因结构、功能及Mlo突变的等位基因(mlo)的抗性特点;讨论了mlo基因可能的抗病机制。为mlo抗性在麦类白粉病抗病育种中的应用提供了理论基础。  相似文献   

8.
9.
Higher plants possess large multigene families encoding secreted class III peroxidase (Prx) proteins. In barley, two Prx cDNAs encoding HvPrx07 and HvPrx08 have been isolated and characterized to some extent with respect to a resistance-mediating function upon attack by the powdery-mildew fungus Blumeria graminis f.sp. hordei ( Bgh ). Here we present evidence for the tissue-specific accumulation of a new Prx mRNA, HvPrx40 , in Bgh -attacked epidermis of barley ( Hordeum vulgare ). The encoded protein is predicted to be secreted into the apoplastic space of epidermal cells due to the absence of a C-terminal extension, which distinguishes it from other Prx proteins reported to accumulate in leaf epidermis. Transient overexpression of HvPrx40 enhanced the resistance of wheat ( Triticum aestivum ) and barley against Blumeria graminis f.sp. tritici (wheat powdery mildew) and Bgh , respectively. These findings were complemented by transient-induced gene silencing showing hypersusceptibility of barley leaf epidermal cells to Bgh . The local accumulation of oxidized 3,3-diaminobenzidine that reflects H2O2 production at sites of attempted fungal penetration was not reduced in HvPrx40 -silenced cells, suggesting a role of this peroxidase other than the production of reactive oxygen species.  相似文献   

10.
11.
Chance and selection in the evolution of barley mildew   总被引:1,自引:0,他引:1  
Populations of the barley powdery mildew fungus are genetically very diverse. However, when a new resistance gene is introduced into barley to control mildew, the population of the pathogen may respond by rapid growth of a few virulent clones. These phases of rapid clonal evolution cause radical changes in the frequencies of mildew genotypes.  相似文献   

12.
Dong W  Nowara D  Schweizer P 《The Plant cell》2006,18(11):3321-3331
To study protein ubiquitination pathways in the interaction of barley (Hordeum vulgare) with the powdery mildew fungus (Blumeria graminis), we measured protein turnover and performed transient-induced gene silencing (TIGS) of ubiquitin and 26S proteasome subunit encoding genes in epidermal cells. Attack by B. graminis hyperdestabilized a novel unstable green fluorescent protein fusion that contains a destabilization domain of a putative barley 1-aminocyclopropane-1-carboxylate synthase, suggesting enhanced protein turnover. Partial depletion of cellular ubiquitin levels by TIGS induced extreme susceptibility of transformed cells toward the appropriate host pathogen B. graminis f. sp hordei, whereas papilla-based resistance to the nonhost pathogen B. graminis f. sp tritici and host resistance mediated by the mlo gene (for mildew resistance locus O) remained unaffected. Cells were rescued from TIGS-induced ubiquitin depletion by synthetic genes encoding wild-type or mutant barley monoubiquitin proteins. The strongest rescue was from a gene encoding a K63R mutant form of ubiquitin blocked in several ubiquitination pathways while still allowing Lys-48-dependent polyubiquitination required for proteasomal protein degradation. Systematic RNA interference of 40 genes encoding all 17 subunits of the proteasome 19S regulatory particle failed to induce hypersusceptibility against B. graminis f. sp hordei. This suggests a role for Lys-48-linked protein polyubiquitination, which is independent from the proteasome pathway, in basal host defense of barley.  相似文献   

13.
We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction.  相似文献   

14.
Calcium-dependent protein kinases (CDPKs) are known to play pivotal roles in intracellular signaling during abiotic and biotic stress responses. To unravel potential functions of CDPKs in the course of barley (Hordeum vulgare)-powdery mildew (Blumeria graminis) interactions, we systematically analyzed the HvCDPK gene family. We found that, according to the existence of respective expressed sequence tags, at least nine paralogs are expressed in the barley leaf epidermis, the sole target tissue of powdery mildew fungi. We exemplarily selected two HvCDPKs with known full-length coding sequence for functional analysis. Transient expression of a putative constitutive active variant of one of these (HvCDPK4) in Nicotiana benthamiana triggered kinase-dependent mesophyll cell death in tobacco leaves. In a barley mlo mutant genotype, a constitutive active variant of the second paralog, HvCDPK3, partially compromised the highly effective resistance to B. graminis f. sp. hordei. A similar break of mlo resistance was seen upon expression of the junction domain of HvCDPK4, supposed to act as a dominant inhibitor of CDPK activity. Expression of a constitutive active HvCDPK3 or HvCDPK4 form also compromised penetration resistance to the inappropriate wheat powdery mildew fungus. Collectively, our data provide evidence for antagonistic roles of individual CDPK paralogs in the control of host cell entry during the early phase of powdery mildew pathogenesis.  相似文献   

15.
16.
Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner.  相似文献   

17.
Hordeum bulbosum L. is a source of disease resistance genes that would be worthwhile transferring to barley (H. vulgare L.). To achieve this objective, selfed seed from a tetraploid H. vulgare x H. bulbosum hybrid was irradiated. Subsequently, a powdery mildew-resistant selection of barley phenotype (81882/83) was identified among field-grown progeny. Using molecular analyses, we have established that the H. bulbosum DNA containing the powdery mildew resistance gene had been introgressed into 81882/83 and is located on chromosome 2 (2I). Resistant plants have been backcrossed to barley to remove the adverse effects of a linked factor conditioning triploid seed formation, but there remains an association between powdery mildew resistance and non-pathogenic necrotic leaf blotching. The dominant resistance gene is allelic to a gene transferred from H. bulbosum by co-workers in Germany, but non-allelic to all other known powdery mildew resistance genes in barley. We propose Mlhb as a gene symbol for this resistance.  相似文献   

18.
In an increasing number of plant–microbe interactions, it has become evident that the abundance of immunity‐related proteins is controlled by the ubiquitin–26S proteasome system. In the interaction of barley with the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh), the RAC/ROP [RAT SARCOMA‐related C3 botulinum toxin substrate/RAT SARCOMA HOMOLOGUE (RHO) of plants] guanosine triphosphatase (GTPase) HvRACB supports the fungus in a compatible interaction. By contrast, barley HvRBK1, a ROP‐binding receptor‐like cytoplasmic kinase that interacts with and can be activated by constitutively activated HvRACB, limits fungal infection success. We have identified a barley type II S‐phase kinase 1‐associated (SKP1)‐like protein (HvSKP1‐like) as a molecular interactor of HvRBK1. SKP1 proteins are subunits of the SKP1‐cullin 1‐F‐box (SCF)–E3 ubiquitin ligase complex that acts in the specific recognition and ubiquitination of protein substrates for subsequent proteasomal degradation. Transient induced gene silencing of either HvSKP1‐like or HvRBK1 increased protein abundance of constitutively activated HvRACB in barley epidermal cells, whereas abundance of dominant negative RACB only weakly increased. In addition, silencing of HvSKP1‐like enhanced the susceptibility of barley to haustorium establishment by Bgh. In summary, our results suggest that HvSKP1‐like, together with HvRBK1, controls the abundance of HvRACB and, at the same time, modulates the outcome of the barley–Bgh interaction. A possible feedback mechanism from RAC/ROP‐activated HvRBK1 on the susceptibility factor HvRACB is discussed.  相似文献   

19.
20.
Leaf-specific thionins of barley (Hordeum vulgare L.) have been identified as a novel class of cell-wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. The distribution of these polypeptides has been studied in the host-pathogen system of barley and Erisyphe graminis DC.f.sp. hordei Marchal (powdery mildew). Immunogold-labelling of thionins in several barley cultivars indicates that resistance or susceptibility may be attributed to the presence or absence of thionins at the penetration site in walls and papillae of epidermal leaf cells.All of the leaf-specific thionin genes are confined to the distal end of the short arm of chromosome 6 of barley. None of the genes for cultivarspecific resistance to powdery mildew which have previously been mapped on barley chromosomes are found close to this locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号