首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of "membranous cytochrome oxidase" has been investigated by X-ray diffraction, optical polarization spectroscopy and EPR spectroscopy. These studies indicate that the cytochrome oxidase molecules are oriented symmetrically in the membrane profile with a significant portion of their mass occurring within the extravesicular surface of the membrane; the oxidase molecultes span the membrane profile; the distribution of the oxidase molecules over the plane of these membranes is non-crystalline; the oxidase molecules contain bundles of alpha-helical polypeptide chain segments where the average orientation of the helices is normal to the membrane plane; and the average heme orientation within the oxidase molecules is such that the normal to the heme plane lies in the plane of the membrane.  相似文献   

2.
The specificity of T cells for syngeneic target cells is directed to both antigens and products of the major histocompatibility complex (MHC) on the target cell surface. This dual requirement is best accounted for by the altered-self hypothesis, which implies that the MHC products on a cell's surface are able to form complexes with many other proteins on the surface of the same cell. To account for the ability of MHC products to bind so many different cell surface antigens we propose that interactions in general among macromolecules on the surface of a membrane may be dramatically enhanced by a purely physical effect. This effect derives from the confinement of membrane macromolecules to an effective volume which is the product of membrane surface area times d, the distance over which the center of mass of the molecules can move in a vertical direction (perpendicular to the membrane surface). Because d is very small the effective concentrations of surface molecules are extremely high and their interactions are correspondingly enhanced.  相似文献   

3.
The structure of “membranous cytochrome oxidase” has been investigated by X-ray diffraction, optical polarization spectroscopy and EPR spectroscopy. These studies indicate that the cytochrome oxidase molecules are oriented asymmetrically in the membrane profile with a significant portion of their mass occurring within the extravesicular surface of the membrane; the oxidase molecultes span the membrane profile; the distribution of the oxidase molecules over the plane of these membranes is non-crystalline; the oxidase molecules contain bundles of α-helical polypeptide chain segments where the average orientation of the helices is normal to the membrane plane; and the average heme orientation within the oxidase molecules is such that the normal to the heme plane lies in the plane of the membrane.  相似文献   

4.
Autoradiography of cell envelope "ghosts" from Escherichia coli was used to demonstrate that newly synthesized molecules of "matrix" protein are inserted at random locations over the entire surface of the outer membrane and that, once inserted, these molecules are not thereafter conserved in any fixed spatial location.  相似文献   

5.
Quenching of the fluorescence of Trp residues in a membrane protein by lipids with bromine-containing fatty acyl chains provides a powerful technique for measuring lipid-protein binding constants. Single Trp residues have been placed on the periplasmic and cytoplasmic sides of the mechanosensitive channel of large conductance MscL from Mycobacterium tuberculosis to measure, separately, lipid binding constants on the two faces of MscL. The chain-length dependence of lipid binding was found to be different on the two sides of MscL, the chain-length dependence being more marked on the cytoplasmic than on the periplasmic side. To determine if lipid binding constants are affected by the properties of the lipid molecules not in direct contact with MscL (the bulk lipid), the amount of bulk lipid present in the system was varied. The binding constant of the short-chain phospholipid didodecylphosphatidylcholine was found to be independent of the molar ratio of lipid/MscL pentamer over the range 500:1-50:1, suggesting that lipid binding constants are determined largely by the properties of the lipid molecules interacting directly with MscL. These results point to a model in which lipid molecules located on the transmembrane surface of a membrane protein (the annular lipid molecules), by playing a dominant role in the interaction between a membrane protein and the surrounding lipid bilayer, could effectively buffer the membrane protein from changes in the properties of the bulk lipid bilayer.  相似文献   

6.
Salmonella typhimurium contains three "major proteins" or "porins" (34K, 35K, and 36K) in the outer membrane. A mutant strain producing only the 35K porin was first grown in media containing high concentrations of NaCl to "repress" the porin synthesis and then was shifted into a medium without NaCl. The newly made porin molecules were then labeled with the ferritin-coupled antibody at various times after the shift, and the samples were examined by whole-mount, freeze-etching, and thin-section electron microscopy. These experiments showed that newly inserted porins appeared as discrete patches uniformly distributed over the surface of the cell and, furthermore, that the sites of adhesion between the inner and outer membrane were most probably the pathway by which the newly made porin molecules appeared on cell surface. The 34K and 36K porins were also inserted in the same manner, since the appearance of new porins at discrete sites all over the cell surface was also observed when cells with wild-type porin phenotype were treated with unlabeled antibody to block existing antigenic sites, subsequently regrown, and labeled with the ferritin-coupled antibody. Since porins comprise a major portion of the densely packed, relatively immobile, "protein framework" of the outer membrane, these results lead us to conclude that the outer membrane grows predominantly by diffuse intercalation rather than by the zonal growth mechanism.  相似文献   

7.
Collagenous transmembrane proteins are an emerging group of biologically versatile molecules which function as both cell surface receptors and matrix molecules. The seven group members have interesting structural similarities: they are integral membrane proteins in type II orientation and have one or more collagenous domains in the extracellular C-terminus; interspersed by non-collagenous stretches which confer structural flexibility to the ectodomain. A conserved coiled-coil sequence (linker domain) immediately adjacent to the extracellular face of the cell membrane presumably serves as a nucleus for trimerization and triple-helix folding of each collagen. Intriguingly, the ectodomains of at least some of these molecules are proteolytically shed from the cell surface, releasing a shorter form of the collagen into the extracellular matrix. Collagenous transmembrane proteins are expressed in many different tissues and cells, and are involved in a broad spectrum of biological functions, reaching from epithelial and neural cell adhesion, and epithelial-mesenchymal interactions during morphogenesis to host defense against microbial agents. Several group members are involved in the molecular pathology of genetic and acquired human diseases including epidermolysis bullosa, ectodermal dysplasia, bullous pemphigoid or Alzheimer disease. An extensively investigated member is collagen XVII, a keratinocyte surface protein, which attaches the epidermis to the basement membrane in the skin. In this review, the structure and functions of the currently known collagenous transmembrane proteins are summarized and, as a 'prototype' of the group, collagen XVII and its biology and pathophysiology are delineated.  相似文献   

8.
Complex formation between horse heart cytochrome c (cyt c) and bovine cytochrome c oxidase (cco) incorporated into a supported planar egg phosphatidylcholine membrane containing varying amounts of cardiolipin (CL) (0-20 mol%) has been studied under low (10 mM) and medium (160 mM) ionic strength conditions by surface plasmon resonance (SPR) spectroscopy. Both specific and nonspecific modes of cyt c binding are observed. The dissociation constant of the specific interaction between cyt c and cco increases from approximately 6.5 microM at low ionic strength to 18 microM at medium ionic strength, whereas the final saturation level of bound protein is independent of salt concentration and corresponds to approximately 53% of the total cco molecules present in the membrane. This suggests a 1:1 binding stoichiometry between the two proteins. The nonspecific binding component is governed by electrostatic interactions between cyt c and the membrane lipids and results in a partially ionic strength-reversible protein-membrane association. Thus, hydrophobic interactions between cyt c and the membrane, which are the predominant mode of binding in the absence of cco, are greatly suppressed. Both the amount of nonspecifically bound protein and the binding affinity can be varied over a broad range by changing the ionic strength and the extent of CL incorporation into the membrane. Under conditions approximating the physiological state in the mitochondrion (i.e., 20 mol% CL and medium ionic strength), 1-1.5 cyt c molecules are bound to the lipid phase per molecule of cco, with a dissociation constant of 0.1 microM. The possible physiological significance of these observations is discussed.  相似文献   

9.
Several lines of evidence suggest that endocytosis of MHC class I molecules requires conserved motifs within the cytoplasmic domain. In this study, we show, in the C58 rat thymoma cell line transfected with HLA-B27 molecules, that replacement of the highly conserved tyrosine (Tyr320) in the cytoplasmic domain of HLA-B27 does not hamper cell surface expression of beta2-microglobulin H chain heterodimers or formation of misfolded molecules. However, Tyr320 replacement markedly impairs spontaneous endocytosis of HLA-B27. Although wild-type molecules are mostly internalized via endosomal compartments, Tyr320-mutated molecules remain at the plasma membrane in which partial colocalization with endogenous transferrin receptors can be observed, also impairing their endocytosis. Finally, we show that Tyr320 substitution enhances release of cleaved forms of HLA-B27 from the cell surface. These studies show for the first time that Tyr320 is most likely part of a cytoplasmic sorting motif involved in spontaneous endocytosis and shedding of MHC class I molecules.  相似文献   

10.
Interaction of cells with hyaluronan (HA) rich extracellular matrix involves the membrane receptor CD44. HA-CD44 interactions are particularly important in the development of glioma pathogenesis for its implication in tumor cells spreading. Highly motile states rely on the spaciotemporal regulation of HA-CD44 interactions occurring in specific cytoskeletal-supported membrane organization such as microvilli or the leading edge observed in migrating cell. We used AFM-based force measurement to probe the HA-CD44 interaction at localized regions at the surface of living glioma cells expressing high level of the CD44 standard isoform. We show that unstimulated cells interact with HA over their entire surfaces and are highly deformable when force is exerted on individual HA molecules bound to membrane CD44 receptors. Conversely, in PKC-activated cells the probed interactions are concentrated at the leading edge of the cells with reduced membrane deformability. Taken together, our results show that PKC-enhanced motility in glioma cells is associated with a redistribution of CD44 receptors at the leading edges concomitant with a stiffer anchoring of CD44 to the cell surface involving the actin cytoskeleton.  相似文献   

11.
The probable arrangement of the bacteriorhodopsin molecules in the purple membrane of Halobacterium halobium is in clusters of three, with a 3-fold axis at the centre of each cluster; the axis is at right angles to the plane of the membrane. The proposed arrangement and the results of model calculations together indicate that each protein molecule spans the entire thickness of the membrane. An earlier proposal for the structure had the protein molecules in two layers, and it was symmetric in projection onto the profile-axis. This model is now rejected since it would be difficult to account for the recently discovered function of pumping protons. There remains a discrepancy in that the calculated number of protein molecules in the unit-cell is 3.4 compared to the three expected.The X-ray diffraction patterns from dispersions of the lipids extracted from the red and purple membranes of H. halobium are described.Model calculations are reported, which are based on the bilayer profile calculated for the extracted lipids and on two simple profiles for the protein. The calculations favour a structure for the purple membrane having the lipid molecules in two layers, as in a bilayer, although there may be more of the lipid on one side of the membrane than on the other. Assuming bilayer structure, the diffraction nearest the centre of the oriented pattern suggests that the lipid molecules may be located mainly in a few discrete regions, roughly 20 Å across, between the protein molecules. An uninterrupted monolayer of the lipid on one surface of a sheet of the protein molecules gives poor agreement with the observed profile-diffraction.The X-ray diffraction pattern from the oriented membranes suggested α-helix in the bacteriorhodopsin, and this has been confirmed by recording a 1.5 Å-reflection oriented on the profile-axis. There appear to be at least two segments of α-helix, which are somewhat inclined to one another, and the two may be packed together. Prominent diffraction on the in-plane axis near 10 Å is consistent with the segments lying more or less perpendicular to the plane of the membrane.  相似文献   

12.
Interactions of membrane anchored molecules such as glycolipids with a membrane surface are important in determining headgroup conformation. It is therefore essential to represent these membrane surface interactions in molecular modeling studies of glycolipids and other membrane bound molecules. We introduce here an energy term that represents the interaction of molecules with a membrane bilayer. This membrane interaction energy term has been added to the potential energy function of a molecular dynamics and mechanics program and has been parameterized using partition coefficients between an aqueous solution and a vesicular membrane for two model glycolipids.  相似文献   

13.
GPI-linked protein molecules become Triton-insoluble during polarized sorting to the apical cell surface of epithelial cells. These insoluble complexes, enriched in cholesterol, glycolipids, and GPI-linked proteins, have been isolated by flotation on sucrose density gradients and are thought to contain the putative GPI-sorting machinery. As the cellular origin and molecular protein components of this complex remain unknown, we have begun to characterize these low-density insoluble complexes isolated from MDCK cells. We find that these complexes, which represent 0.4-0.8% of the plasma membrane, ultrastructurally resemble caveolae and are over 150-fold enriched in a model GPI-anchored protein and caveolin, a caveolar marker protein. However, they exclude many other plasma membrane associated molecules and organelle-specific marker enzymes, suggesting that they represent microdomains of the plasma membrane. In addition to caveolin, these insoluble complexes contain a subset of hydrophobic plasma membrane proteins and cytoplasmically-oriented signaling molecules, including: (a) GTP- binding proteins--both small and heterotrimeric; (b) annex II--an apical calcium-regulated phospholipid binding protein with a demonstrated role in exocytic fusion events; (c) c-Yes--an apically localized member of the Src family of non-receptor type protein- tyrosine kinases; and (d) an unidentified serine-kinase activity. As we demonstrate that caveolin is both a transmembrane molecule and a major phospho-acceptor component of these complexes, we propose that caveolin could function as a transmembrane adaptor molecule that couples luminal GPI-linked proteins with cytoplasmically oriented signaling molecules during GPI-membrane trafficking or GPI-mediated signal transduction events. In addition, our results have implications for understanding v- Src transformation and the actions of cholera and pertussis toxins on hetero-trimeric G proteins.  相似文献   

14.
The sperm cell has a characteristic polarized morphology and its surface is also highly differentiated into different membrane domains. Junctional protein ring structures seal the surface of the mid-piece from the head and the tail respectively and probably prevent random diffusion of membrane molecules over the protein rings. Despite the absence of such lateral diffusion-preventing structures, the sperm head surface is also highly heterogeneous. Furthermore, lipid and membrane protein ordering is subjected to changes when sperm become capacitated. The forces that maintain the lateral polarity of membrane molecules over the sperm surface, as well as those that cause their dynamic redistribution, are only poorly understood. Nevertheless, it is known that each of the sperm head surface regions has specific roles to allow sperm to fertilize the oocyte: a specific region is devoted to zona pellucida binding, a larger area of the sperm head surface is involved in the acrosome reaction (intracellular fusion), while yet another region is involved in egg plasma membrane binding and fertilization fusion (intercellular membrane fusion). All three events occur in the area of the sperm head where the plasma membrane covers the acrosome. Recently, lipid ordered microdomains (lipid rafts) were discovered in membranes of many biological specimens including sperm. In this review, we cover the latest insights about sperm lipid raft research and discuss how sperm lipid raft dynamics may relate to sperm-zona binding and the zona-induced acrosome reaction.  相似文献   

15.
To identify a molecule involved in sperm‐egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm‐surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti‐SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti‐SGP antibody recognized large molecules, with molecular masses of 65–150 kDa and minor smaller molecules with masses of 20–28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle‐binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm‐egg membrane binding and is responsible for the establishment of fertilization in Xenopus.  相似文献   

16.
Huntington's disease, a progressively degenerative neurological disorder inherited as an autosomal dominant trait, results in selective neuronal loss in the basal ganglia and other areas of the brain. Based on research in our laboratory employing electron spin resonance, analytical, enzymatic, biochemical and morphological techniques to study erythrocyte membranes, which are completely outside the central nervous system, we have suggested that Huntington's disease is associated with a generalized membrane defect involving a protein and probably manifested at the external membrane surface. Other workers have subsequently obtained biophysical, biochemical, and morphological results on extraneural tissue in Huntington's disease including erythrocytes, lymphocytes, platelets,and cultured skin fibroblasts that supports this hypothesis. This review will summarize and evaluate the current knowledge of the involvement of a membrane defect in the etiology and pathogenesis of Huntington's disease.  相似文献   

17.
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium Escherichia coli, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the in vivo MinDE localization dynamics by accounting for the previously reported properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally.  相似文献   

18.
The electron transfer reactions between a lipid bilayer-modified gold electrode and oxidized spinach plastocyanin have been studied by cyclic voltammetry, using either an electrically neutral phosphatidylcholine (PC) bilayer or a positively charged PC bilayer containing 40 mol% dimethyldioctadecylammonium chloride, at two ionic strengths of electrolyte (0.02 and 0.2 M NaClO4). Plastocyanin was found to interact strongly enough with the lipid membrane to support an efficient electron transfer reaction with the electrode. The interaction forces, and therefore the mode of diffusion of plastocyanin molecules to the electrode, which limits the electron transfer rate, could be controlled by the PC concentration. At low lipid concentrations (0-5 mg/ml), electrostatically attractive interactions between specific microelectroactive sites on the surface of the lipid membrane and plastocyanin molecules predominate, producing a radial mode of diffusion of the protein molecules to the electrode surface. On the other hand, at high lipid concentrations (greater than 5 mg/ml), interaction between plastocyanin and the lipid membrane occurs via hydrophobic forces, and a linear diffusion of protein molecules limits the electron transfer process. These observations support and extend other experimental and theoretical results which indicate two possible sites on the surface of the plastocyanin molecule, one hydrophobic and one negatively charged, which are able to participate in electron transfer reactions. We conclude that electrochemical measurements with the present system provide a new approach to the study of redox protein-membrane interactions.  相似文献   

19.
A monoclonal antibody that blocks the binding of diphtheria toxin to Vero cells was isolated by immunizing mice with Vero cell membrane. The antibody inhibits the binding of diphtheria toxin and also CRM197, a mutant form of diphtheria toxin, to Vero cells, and consequently inhibits the cytotoxicity of diphtheria toxin. This antibody does not directly react with the receptor molecule of diphtheria toxin (DTR14.5). Immunoprecipitation and immunoblotting studies revealed that this antibody binds to a novel membrane protein of 27 kDa (DRAP27). When diphtheria toxin receptor was passed through an affinity column made with this antibody, the receptor was trapped only in the presence of DRAP27. These results indicate that DRAP27 and DTR14.5 closely associate in Vero cell membrane and that the inhibition of the binding of diphtheria toxin to the receptor is due to the binding of the antibody to the DRAP27 molecule. Binding studies using 125I-labeled antibody showed that there are many more molecules of DRAP27 on the cell surface than diphtheria toxin-binding sites. However, there is a correlation between the sensitivity of a cell line to diphtheria toxin and the number of DRAP27 molecules on the cell surface, suggesting that DRAP27 is involved in the entry of diphtheria toxin into the target cell.  相似文献   

20.
Membrane chromatography has already proven to be a powerful alternative to polishing columns in flow‐through mode for contaminant removal. As flow‐through utilization has expanded, membrane chromatography applications have included the capturing of large molecules, including proteins such as IgGs. Such bind‐and‐elute applications imply the demand for high binding capacity and larger membrane surface areas as compared to flow‐through applications. Given these considerations, a new Sartobind Phenyl? membrane adsorber was developed for large‐scale purification of biomolecules based on hydrophobic interaction chromatography (HIC) principles. The new hydrophobic membrane adsorber combines the advantages of membrane chromatography—virtually no diffusion limitation and shorter processing time—with high binding capacity for proteins comparable to that of conventional HIC resins as well as excellent resolution. Results from these studies confirmed the capability of HIC membrane adsorber to purify therapeutic proteins with high dynamic binding capacities in the range of 20 mg‐MAb/cm3‐membrane and excellent impurity reduction. In addition the HIC phenyl membrane adsorber can operate at five‐ to ten‐fold lower residence time when compared to column chromatography. A bind/elute purification step using the HIC membrane adsorber was developed for a recombinant monoclonal antibody produced using the PER.C6® cell line. Loading and elution conditions were optimized using statistical design of experiments. Scale‐up is further discussed, and the performance of the membrane adsorber is compared to a traditional HIC resin used in column chromatography. Biotechnol. Bioeng. 2010; 105: 296–305. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号