首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms are exposed to multiple biotic and abiotic environmental stressors, which can influence the dynamics of individual populations and communities. Populations may also genetically adapt to both natural (e.g. disease) and anthropogenic (e.g. chemical pollution) stress. In the present study, we studied fitness consequences of exposure to both a parasite (i.e. biotic) and a pesticide (i.e. abiotic) for the water flea Daphnia. In addition, we investigated whether these fitness consequences change through time as a population evolves. Thus, we exposed Daphnia magna clones, hatched from dormant eggs isolated from different time layers of a natural dormant egg bank, to the parasite Pasteuria ramosa and the insecticide diazinon in a multifactorial experiment. While our experimental treatments for unknown reasons failed to induce disease symptoms in the Daphnia, we did observe a reduced survival of D. magna when simultaneously exposed to both the parasite and the pesticide. No increased mortality upon exposure to individual stressors was observed. We did not observe an evolutionary change in fitness response of the Daphnia clones hatched from different time horizons upon exposure to stressors.  相似文献   

2.
  1. Climate change has the potential to shape the future of infectious diseases, both directly and indirectly. In aquatic systems, for example, elevated temperatures can modulate the infectivity of waterborne parasites and affect the immune response of zooplanktonic hosts. Moreover, lake warming causes shifts in the communities of primary producers towards cyanobacterial dominance, thus lowering the quality of zooplankton diet. This may further affect host fitness, resulting in suboptimal resources available for parasite growth.
  2. Previous experimental studies have demonstrated the respective effects of temperature and host diet on infection outcomes, using the zooplankter Daphnia and its microparasites as model systems. Although cyanobacteria blooms and heat waves are concurrent events in nature, few attempts have been made to combine both stressors in experimental settings.
  3. Here, we raised the zooplankter Daphnia (two genotypes) under a full factorial design with varying levels of temperature (the standard 19°C and elevated 23°C), food quality (Scenedesmus obliquus as high-quality green algae, Microcystis aeruginosa and Planktothrix agardhii as low-quality cyanobacteria) and exposed them to the parasitic yeast Metschnikowia bicuspidata. We recorded life history parameters of the host as well as parasite traits related to transmission.
  4. The combination of low-quality cyanobacterial diets and elevated temperature resulted in additive detrimental effects on host fecundity. Low-quality diets reduced parasite output, while temperature effects were context dependent. Overall, we argue that the combined effects of elevated water temperature and poor-quality diets may decrease epidemics of a common fungal parasite under a climate change scenario.
  相似文献   

3.
Considerable research efforts have been made to predict the influences of climate change on species composition in biological communities. However, little is known about how changing environmental conditions and anthropogenic pollution can affect aquatic communities in combination. We investigated the influence of short warming periods on the response of a zooplankton community to the insecticide esfenvalerate at a range of environmentally realistic concentrations (0.03, 0.3 and 3 μg L?1) in 55 outdoor pond microcosms. Warming periods increased the cumulative water temperature, but did not exceed the maximum temperature measured under ambient conditions. Under warming conditions alone the abundance of some zooplankton taxa increased selectively compared to ambient conditions. This resulted in a shift in the community composition that had not recovered by the end of the experiment, 8 weeks after the last warming period. Regarding the pesticide exposure, short‐term effects of esfenvalerate on the community structure and the sensitive taxa Daphnia spp. did not differ between the two temperature regimes. In contrast, long‐term effects of esfenvalerate on Daphnia spp., a taxon that did not benefit from elevated temperatures, were observed twice as long under warming than under ambient conditions. This resulted in long‐term effects on Daphnia spp. until 4 months after contamination at 3 μg L?1 esfenvalerate. Under both temperature regimes, we identified strength of interspecific competition as the mechanism determining the time until recovery. However, enhanced interspecific competition under warming conditions was prolonged and explained the delayed recovery of Daphnia spp. from esfenvalerate. These results show that, for realistic prediction of the combined effects of changing environmental factors and toxicants on sensitive taxa, the impacts of stressors on the biotic interactions within the community need to be considered.  相似文献   

4.
5.
Natural populations are exposed to multiple stressors. These stressors may interact, leading to synergistic or antagonistic responses. In addition to these direct interaction effects, there may also be an interaction between stressors through a selection effect: as the population genetically responds to one stressor, it may become more vulnerable to another one, for instance because of an associated reduction in genetic variation. We here capitalized on a selection experiment involving the exposure of Daphnia populations to carbaryl pulses to test the hypothesis that selection imposed by this pesticide may increase vulnerability to fish predation in the resulting population. A direct predation experiment with individuals isolated from carbaryl-exposed and non-exposed populations revealed no effect of prior selection by carbaryl exposure on mortality due to stickleback predation.  相似文献   

6.
Understanding responses of parasites to changes in nutrient regimes is necessary for prediction of their role in aquatic ecosystems under global change in nutrient loading. We studied the response of the natural parasite fauna of Daphnia longispina to nutrient enrichment in mesocosms in a small humic lake. We measured the concentrations of inorganic phosphorus and nitrogen in the water, total nutrients in the seston, algal and bacterial biomass, Daphnia population dynamics, Daphnia stoichiometry, Daphnia stable isotope values and the presence and abundance of parasites in treated mesocosms as compared to three control ones. Incorporation of the nutrient enrichment in the food web was seen as increased nutrient concentrations in the epilimnion and as a decrease in carbon:nutrient ratios and δ15N values in Daphnia. Nutrient enrichment did not significantly influence algal, bacterial or Daphnia biomass. One of the four parasite species observed, unidentified small gut parasite, had a higher prevalence (percentage of Daphnia infected) in treated mesocosms, but its intensity (number of parasites per infected host) remained the same among treatments. Our results suggest that the effect of nutrient enrichment on host–parasite dynamics is dependent on complex interactions within food webs and on the epidemiological traits of parasites.  相似文献   

7.
Natural populations often show genetic variation in parasite resistance, forming the basis for evolutionary response to selection imposed by parasitism. We investigated whether previous epidemics selected for higher resistance to novel parasite isolates in a Daphnia galeatamicroparasite system by comparing susceptibility of host clones from populations with varying epidemic history. We manipulated resource availability to evaluate whether diet influences Daphnia susceptibility as epidemics are common in nutrient‐rich lakes. Exposing clones from 10 lakes under two food treatments to an allopatric protozoan parasite, we found that Daphnia originating from lakes (mainly nutrient rich) with previous epidemics better resist infection. Despite this result, there was a tendency of higher susceptibility in the low food treatment, suggesting that higher resistance of clones from populations with epidemic background is not directly caused by lake nutrient level. Rather, our results imply that host populations respond to parasite‐mediated selection by evolving higher parasite resistance.  相似文献   

8.
Concentration factors (CF) of 54Mn for three aquatic species: green algae (Protococcoidal chlorella), Daphnia magna, and fathead minnows (Pimephales promelas) were determined following direct exposure to the isotope in solution. The maximum accumulation (CF = 911) in P. chlorella was reached at 48 hours of exposure; the maximum uptake (CF = 65) in Daphnia was reached at 8 hours of exposure; and the maximum accumulation (CF = 22.6) in fathead minnows was at 128 hours of exposure. The data indicate that 54Mn accumulation decreases with ascent up a theoretical aquatic food chain when water is the only source of contamination.  相似文献   

9.
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia‐parasite‐predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host–parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator‐exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia–parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.  相似文献   

10.
Parasites are a common and constant threat to organisms at all levels of phyla. The virulence of a parasite, defined as the impact on survival and reproduction of its host, depends on the specific host–parasite combination and can also be influenced by environmental conditions. Environmental pollution might be an additional factor influencing host–parasite interactions. We here aimed to test whether the combined stress of pollutant exposure and parasite challenge results in stronger impacts on host organisms than expected from the single stressors applied alone. We used the water flea Daphnia magna and two of its endoparasites, the bacterium Pasteuria ramosa and the microsporidium Flabelliforma magnivora, as invertebrate host–parasite models. For each parasite, we tested in a full‐factorial design for interactions between parasitism and pollution using the neurotoxic pesticide carbaryl as a model substance. Sublethal concentrations of the pesticide synergistically enhanced the virulence of both parasites by increasing host mortality. Furthermore, host castration induced by P. ramosa was accelerated by carbaryl exposure. These effects likely reflect decreased host resistance due to direct or indirect immunosuppressive activity of carbaryl. The present study provides experimental evidence that the in vivo development of infectious diseases can be influenced by a pesticide at environmentally realistic concentrations. This implies that host–parasite interactions and subsequently co‐evolution might be influenced by environmental pollution at toxicant concentrations being sublethal to parasite‐free hosts. Standard toxicity testing as employed in the current way of conducting ecological risk assessments for anthropogenic substances does not consider natural antagonists such as infectious diseases, and thereby likely underestimates the impact these substances may pose to natural populations in the environment.  相似文献   

11.
Pulkkinen K 《Oecologia》2007,154(1):45-53
Single parasite species often have a range of different hosts which vary in their ability to sustain the parasite. When foraging for food, alternative hosts with similar feeding modes may compete for the infective stages of trophically transmitted parasites. If some of the infective stages end up in unsuitable hosts, transmission of the parasite to the focal host is decreased. I studied whether the presence of conspecifics alters the probability of an uninfected susceptible recipient Daphnia becoming infected by a microparasite and if this effect depends on whether the added conspecifics themselves are susceptible or resistant to infection. The presence of both susceptible and resistant conspecifics decreased the probability of infection in recipients. This effect was dependent on the density of the conspecifics but was not found to be related to their size. In addition, when Daphnia were placed in medium derived from crowded Daphnia populations, the probability of infection in recipients decreased as compared to that in standard medium. This implies that decreases in transmission probability are not caused by dilution of spores through food competition only, but also by indirect interference mediated through infochemicals released by Daphnia. Since Daphnia have been found to respond to crowding by decreasing their filtering rate, the decrease in transmission is probably caused by decreased intake of spores in crowded conditions. The presence of conspecifics can thus decrease microparasite transmission in Daphnia which may have important consequences for epidemiology and evolution of Daphnia parasites.  相似文献   

12.
The antipredator behavior diel vertical migration (DVM), common in aquatic keystone species Daphnia, involves daily migration from warmer surface waters before dawn to cooler deeper waters after dusk. Plasticity in Daphnia DVM behavior optimizes fitness via trade-offs between growth, reproduction, and predator avoidance. Migration behavior is affected by co-varying biotic and abiotic factors, including light, predator cues, and anthropogenic stressors making it difficult to determine each factor's individual contribution to the variation in this behavior. This study aims to better understand this ecologically significant behavior in Daphnia by: (1) determining how Daphnia pulicaria thermal preferences vary within and among natural populations; (2) distinguishing the role of temperature verses depth in Daphnia vertical migration; and (3) defining how two anthropogenic stressors (copper and nickel) impact Daphnia migratory behavior.Simulated natural lake stratification were constructed in 8 L (0.5 m tall, 14.5 cm wide) water columns to monitor under controlled laboratory conditions the individual effects of temperature gradients, depth, and metal stressors on Daphnia vertical migration. Three major findings are reported. First, while no difference in thermal preference was found among the four populations studied, within lake populations variability among isolates was high. Second, decoupling temperature and depth revealed that depth was a better predictor of Daphnia migratory patterns over temperature. Third, exposure to environmentally relevant concentrations of copper or nickel inhibited classic DVM behavior. These findings revealed the high variability in thermal preference found within Daphnia populations, elucidated the individual roles that depth and temperature have on migratory behavior, and showed how copper and nickel can interfere with the natural response of Daphnia to fish predator cues. Thus contributing to the body of knowledge necessary to predict how natural populations of Daphnia will be affected by climate related changes in lake temperatures and increased presence of anthropogenic stressors.  相似文献   

13.
Parasites and predators are ubiquitous threats in every ecosystem. Host and prey species, respectively, have evolved effective protective mechanisms which are assumed to involve costs. In this study, we analyzed potential interactions between both threats. We exposed waterfleas (Daphnia longicephala) simultaneously to parasite spores (the yeast Metschnikowia) and cues from predatory notonectids (Notonecta glauca). In response to the parasite, D. longicephala had a delayed maturation time and produced less and smaller offspring, even though the parasite developed no spores. This suggests that hosts can successfully fight off the parasite invoking defensive costs. Some of these effects were altered or even reversed by the presence of predator cues. For example, time to maturity was further delayed when the Daphnia were exposed to both threats than under parasite stress alone. In addition, more offspring were produced in the presence of both threats, although parasites alone reduced their number. However, there was no effect of parasite exposure on the expression of morphological defenses. Our results imply that the impact of parasites on host species depends strongly on the presence of further threats. Similar types of experimental approaches may enhance our understanding of the effects of multiple stressors in natural systems.  相似文献   

14.
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low‐virulent microsporidian parasite decreased in low, but not in high‐host‐diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality‐dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population‐level effects.  相似文献   

15.
We tested the hypothesis that exposure to antibiotics alters the growth and reproductive responses of Daphnia magna to changing stoichiometric food quality. To do so, we measured growth and reproduction of differentially P-nourished Daphnia in the presence and absence of sublethal concentrations of antibiotics. We found that exposure to an antibiotic cocktail significantly reduced an index of the microbial load of Daphnia and altered its growth responses to changing dietary P-content. Growth rates of Daphnia consuming the most P-rich and P-poor food increased with antibiotic exposure but were negatively or not affected in animals eating mildly to moderately P-limiting food. Similar effects were found in a subsequent experiment where daphnid neonates were exposed to natural bacterial communities prior to receiving antibiotics and being fed different food C:P ratios. In contrast, antibiotic effects on Daphnia reproduction were either not detected (number and size of broods) or were relatively minor (day of first reproduction). We also found no evidence that gut flora provides defense against pathogenic bacterial infection; instead, infection rates in Daphnia by a bacterial microparasite, Pasteuria ramosa, decreased in animals that had experienced prior antibiotic exposure. Our results demonstrate that antibiotic exposure reduced the microbial load and altered growth rates of an important zooplankton herbivore. Given the mediating role of animal’s food C:P ratio, our results show that interactions between Daphnia and its microbial symbionts vary in strength and nature partly with the host’s nutritional state.  相似文献   

16.
Phosphorus (P) is an essential nutrient for growth in consumers. P‐limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life‐table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P‐sufficient or P‐limited algae, and assessed the impact of the two stressors on life‐history traits of the host. Both infection and P‐limitation negatively affected some life‐history traits tested. However, under P‐limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P‐limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P‐limited or P‐sufficient hosts. P‐limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P‐limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite‐driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite.  相似文献   

17.
1. Sloppy and inefficient feeding by zooplankton is generally thought to make a major contribution to the regeneration of the dissolved organic carbon (DOC) pool in aquatic environments. In this study, we tested experimentally the regeneration of DOC by a freshwater zooplankter feeding on two species of phytoplankton at different food concentrations and C : P ratios. We separated the DOC production because of inefficient feeding (pre‐ingestive regeneration) and zooplankton excretion and faeces release (postdigestive regeneration). 2. Within a brief incubation period (10 min), DOC production in the presence of Daphnia was not significantly different from that in the control treatment without grazers. During a longer incubation period (4 h), the amounts of radiocarbon retained in the algal cells per se were constant or were not different from those in the control treatments. These experimental results strongly suggest that inefficient feeding did not contribute significantly to DOC production in the grazer–prey system. 3. During the 4‐h incubation, calculations of the DOC per ingestion rate (i.e. DOC produced by Daphnia alone) showed that food concentration and algal species did not affect the relative DOC production, but there was considerable difference at different algal C : P ratios and grazer densities. We found that direct excretion of DOC by Daphnia occurred rapidly following food digestion and accounted for >65% of the total DOC production. Maximum DOC leakage from Daphnia faeces contributed less to DOC production than the grazer excretion, except under P‐limited conditions. 4. This study highlights the dominant role of postingestive process, especially the direct excretion by zooplankton, in DOC production in a grazer–prey system.  相似文献   

18.
The zooplankton assemblages in Crater Lake exhibited consistency in species richness and general taxonomic composition, but varied in density and biomass during the period between 1988 and 2000. Collectively, the assemblages included 2 cladoceran taxa and 10 rotifer taxa (excluding rare taxa). Vertical habitat partitioning of the water column to a depth of 200 m was observed for most species with similar food habits and/or feeding mechanisms. No congeneric replacement was observed. The dominant species in the assemblages were variable, switching primarily between periods of dominance of Polyarthra-Keratella cochlearis and Daphnia. The unexpected occurrence and dominance of Asplanchna in 1991 and 1992 resulted in a major change in this typical temporal shift between Polyarthra-K. cochlearis and Daphnia. Following a collapse of the zooplankton biomass in 1993 that was probably caused by predation from Asplanchna, Kellicottia dominated the zooplankton assemblage biomass between 1994 and 1997. The decline in biomass of Kellicottia by 1998 coincided with a dramatic increase in Daphnia biomass. When Daphnia biomass declined by 2000, Keratella biomass increased again. Thus, by 1998 the assemblage returned to the typical shift between Keratella-Polyarthra and Daphnia. Although these observations provided considerable insight about the interannual variability of the zooplankton assemblages in Crater Lake, little was discovered about mechanisms behind the variability. When abundant, kokanee salmon may have played an important role in the disappearance of Daphnia in 1990 and 2000 either through predation, inducing diapause, or both. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

19.
1. Water fleas of the genus Daphnia are considered rare in tropical regions, and information on species distribution and community ecology is scarce and anecdotal. This study presents the results of a survey of Daphnia species distribution and community composition in 40 standing waterbodies in southern Kenya. The study sites cover a wide range of tropical standing aquatic habitats, from small ephemeral pools to large permanent lakes between approximately 700 and 2800 m a.s.l. Our analysis combines data on Daphnia distribution and abundance from zooplankton samples and dormant eggs in surface sediments. 2. Nearly 70% (27 of 40) of the sampled waterbodies were inhabited by Daphnia. Although their abundance in the active community was often very low, this high incidence shows that Daphnia can be equally widespread in tropical regions as in temperate regions. 3. Analysis of local species assemblages from dormant eggs in surface sediments was more productive than snapshot sampling of zooplankton communities. Surface‐sediment samples yielded eight Daphnia species in total, and allowed the detection of Daphnia in 25 waterbodies; zooplankton samples revealed the presence of only four Daphnia species in 16 waterbodies. 4. Daphnia barbata, D. laevis, and D. pulex were the most frequently recorded and most abundant Daphnia species. Canonical correspondence analysis of species–environment relationships indicates that variation in the Daphnia community composition of Kenyan waters was best explained by fish presence, temperature, macrophyte cover and altitude. Daphnia barbata and D. pulex tended to co‐occur with each other and with fish. Both species tended to occur in relatively large (>10 ha) and deeper (>2 m) alkaline waters (pH 8.5). Daphnia laevis mainly occurred in cool and clear, macrophyte‐dominated lakes at high altitudes.  相似文献   

20.
The combined influence of a pesticide (carbaryl) and a cyanotoxin (microcystin LR) on the life history of Daphnia pulicaria was investigated. At the beginning of the experiments animals were pulse exposed to carbaryl for 24 h and microcystins were delivered bound in Microcystis’ cells at different, sub-lethal concentrations (chronic exposure). In order to determine the actual carbaryl concentrations in the water LC–MS/MS was used. For analyses of the cyanotoxin concentration in Daphnia’s body enzyme-linked immunosorbent assay (ELISA) was used. Individual daphnids were cultured in a flow-through system under constant light (16 h of light: 8 h of dark), temperature (20°C), and food conditions (Scenedesmus obliquus, 1 mg of C l−1). The results showed that in the treatments with carbaryl egg numbers per female did not differ significantly from controls, but the mortality of newborns increased significantly. Increasing microcystin concentrations significantly delayed maturation, reduced size at first reproduction, number of eggs, and newborns. The interaction between carbaryl and Microcystis was highly significant. Animals matured later and at a smaller size than in controls. The number of eggs per female was reduced as well. Moreover, combined stressors caused frequent premature delivery of offspring with body deformations such as dented carapax or an undeveloped heart. This effect is concluded to be synergistic and could not be predicted from the effects of the single stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号