共查询到20条相似文献,搜索用时 15 毫秒
1.
BRADLEY J. WHITE CHANGDE CHENG FREDERIC SIMARD CARLO COSTANTINI NORA J. BESANSKY 《Molecular ecology》2010,19(5):925-939
Previous efforts to uncover the genetic underpinnings of ongoing ecological speciation of the M and S forms of the African malaria vector Anopheles gambiae revealed two centromere‐proximal islands of genetic divergence on X and chromosome 2. Under the assumption of considerable ongoing gene flow between M and S, these persistently divergent genomic islands were widely considered to be ‘speciation islands’. In the course of microarray‐based divergence mapping, we discovered a third centromere‐associated island of divergence on chromosome 3, which was validated by targeted re‐sequencing. To test for genetic association between the divergence islands on all three chromosomes, SNP‐based assays were applied in four natural populations of M and S spanning West, Central and East Africa. Genotyping of 517 female M and S mosquitoes revealed nearly complete linkage disequilibrium between the centromeres of the three independently assorting chromosomes. These results suggest that despite the potential for inter‐form gene flow through hybridization, actual (realized) gene flow between M and S may be substantially less than commonly assumed and may not explain most shared variation. Moreover, the possibility of very low gene flow calls into question whether diverged pericentromeric regions—characterized by reduced levels of variation and recombination—are in fact instrumental rather than merely incidental to the speciation process. 相似文献
2.
James D. Fry 《Experimental & applied acarology》1999,23(5):379-387
Reproductive isolation between demes of a phytophagous arthropod population that use different host plant species could evolve in two different ways. First, adaptation to different host species might result in reproductive isolation as a pleiotropic by-product. Second, if adaptation to one host species strongly reduces fitness on others, selection could favour mechanisms, such as host fidelity and assortative mating, that restrict gene flow between host-adapted demes. A laboratory selection experiment on the broadly polyphagous spider mite Tetranychus urticae gave information on these possibilities. A population allowed to adapt to tomato plants showed increased survival, development rate and fecundity on tomato relative to the base population from which it was derived. In spite of the large difference between the tomato-adapted and base populations in performance on tomato plants, the two populations showed no evidence of reproductive isolation, as measured by the hatching rate of eggs laid by F1 hybrids between the lines. Furthermore, a genetically variable population formed by hybridizing the tomato-adapted and base populations did not show evidence for a decline in ability to survive on tomato after more than ten generations of mass rearing on lima bean, indicating that tomato-adapted genotypes suffered little or no selective disadvantage on bean. These results give no support for the role of host plants in the evolution of reproductive isolation in T. urticae. 相似文献
3.
The evolution of reproductive isolation (RI) is a critical step shaping progress towards speciation. In the context of ecological speciation, a critical question is the extent to which specific reproductive barriers important to RI evolve rapidly and predictably in response to environmental differences. Only reproductive barriers with these properties (importance, rapidity, predictability) will drive the diversification of species that are cohesively structured by environment type. One candidate barrier that might exhibit such properties is allochrony, whereby populations breed at different times. We studied six independent lake–stream population pairs of threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) that are known from genetic studies to show RI. However, the specific reproductive barriers driving this RI have proven elusive, leading to a ‘conundrum of missing reproductive isolation’. We here show that breeding times differ among some of the populations, but not in a consistent manner between lakes and streams. Moreover, the timing differences between lake and stream populations within each pair could account for only a small proportion of total RI measured with neutral genetic markers. Allochrony cannot solve the conundrum of missing reproductive isolation in lake–stream stickleback. 相似文献
4.
5.
Marsden CD Lee Y Nieman CC Sanford MR Dinis J Martins C Rodrigues A Cornel AJ Lanzaro GC 《Molecular ecology》2011,20(23):4983-4994
The suggestion that genetic divergence can arise and/or be maintained in the face of gene flow has been contentious since first proposed. This controversy and a rarity of good examples have limited our understanding of this process. Partially reproductively isolated taxa have been highlighted as offering unique opportunities for identifying the mechanisms underlying divergence with gene flow. The African malaria vector, Anopheles gambiae s.s., is widely regarded as consisting of two sympatric forms, thought by many to represent incipient species, the M and S molecular forms. However, there has been much debate about the extent of reproductive isolation between M and S, with one view positing that divergence may have arisen and is being maintained in the presence of gene flow, and the other proposing a more advanced speciation process with little realized gene flow because of low hybrid fitness. These hypotheses have been difficult to address because hybrids are typically rare (<1%). Here, we assess samples from an area of high hybridization and demonstrate that hybrids are fit and responsible for extensive introgression. Nonetheless, we show that strong divergent selection at a subset of loci combined with highly asymmetric introgression has enabled M and S to remain genetically differentiated despite extensive gene flow. We propose that the extent of reproductive isolation between M and S varies across West Africa resulting in a 'geographic mosaic of reproductive isolation'; a finding which adds further complexity to our understanding of divergence in this taxon and which has considerable implications for transgenic control strategies. 相似文献
6.
David W. Pfennig Christopher K. Akcali David W. Kikuchi 《Evolution; international journal of organic evolution》2015,69(4):1085-1090
We evaluated whether Batesian mimicry promotes early‐stage reproductive isolation. Many Batesian mimics occur not only in sympatry with their model (as expected), but also in allopatry. As a consequence of local adaptation within both sympatry (where mimetic traits are favored) and allopatry (where nonmimetic traits are favored), divergent, predator‐mediated natural selection should disfavor immigrants between these selective environments as well as any between‐environment hybrids. This selection might form the basis for both pre‐ and postmating isolation, respectively. We tested for such selection in a snake mimicry complex by placing clay replicas of sympatric, allopatric, or hybrid phenotypes in both sympatry and allopatry and measuring predation attempts. As predicted, replicas with immigrant phenotypes were disfavored in both selective environments. Replicas with hybrid phenotypes were also disfavored, but only in a region of sympatry where previous studies have detected strong selection favoring precise mimicry. By fostering immigrant inviability and ecologically dependent selection against hybrids (at least in some habitats), Batesian mimicry might therefore promote reproductive isolation. Thus, although Batesian mimicry has long been viewed as a mechanism for convergent evolution, it might play an underappreciated role in fueling divergent evolution and possibly even the evolution of reproductive isolation and speciation. 相似文献
7.
Ecological speciation seems to occur readily but is clearly not ubiquitous – and the relative contributions of different reproductive barriers remain unclear in most systems. We here investigate the potential importance of selection against migrants in lake/stream stickleback (Gasterosteus aculeatus) from the Misty Lake system, Canada. This system is of particular interest because one population contrast (Lake vs. Outlet stream) shows very low genetic and morphological divergence, whereas another population contrast (Lake vs. Inlet stream) shows dramatic genetic and morphological divergence apparently without strong and symmetric reproductive barriers. To test whether selection against migrants might solve this “conundrum of missing reproductive isolation”, we performed a fully factorial reciprocal transplant experiment using 225 individually marked stickleback collected from the wild. Relative fitness of the different ecotypes (Lake, Inlet, and Outlet) was assessed based on survival and mass change in experimental enclosures. We found that Inlet fish performed poorly in the lake (selection against migrants in that direction), whereas Lake fish outperformed Inlet fish in all environments (no selection against migrants in the opposite direction). As predicted from their phenotypic and genetic similarity, Outlet and Lake fish performed similarly in all environments. These results suggest that selection against migrants is asymmetric and, together with previous work, indicates that multiple reproductive barriers contribute to reproductive isolation. Similar mosaic patterns of reproductive isolation are likely in other natural systems. 相似文献
8.
David M. Althoff 《Evolution; international journal of organic evolution》2014,68(1):301-307
Through the process of ecological speciation, insect populations that adapt to new host plant species or to different plant tissues could speciate if such adaptations cause reproductive isolation. One of the key issues in this process is identifying the mechanisms by which adaptation in ecological traits leads directly to reproductive isolation. Here I show that within a radiation of specialist moths that pollinate and feed on yuccas, shifts in egg placement resulted in changes in female moth egg‐laying structures that led to concomitant changes in male reproductive morphology. As pollinator moths evolved to circumvent the ability of yuccas to selectively abscise flowers that contain pollinator eggs, ovipositor length became shorter. Because mating occurs through the ovipositor, shortening of the ovipositor also led to significantly shorter and wider male intromittent organs. In instances where two pollinator moth species occur in sympatry and on the same host plant species, there is one short and one long ovipositor species that are reproductively isolated. Given that many plant‐feeding insects lay eggs into plant tissues, changes in ovipositor morphology that lead to correlated changes in reproductive morphology may be a mechanism that maintains reproductive isolation among closely related species using the same host plant species. 相似文献
9.
Kozak GM Head ML Boughman JW 《Proceedings. Biological sciences / The Royal Society》2011,278(1718):2604-2610
During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity. 相似文献
10.
The evolutionary processes involved in population divergence and local adaptation are poorly understood. Theory predicts that divergence of adjacent populations is possible but depends on several factors including gene flow, divergent selection, population size and the number of genes involved in divergence and their distribution on the genome. We analyse variation in neutral markers, markers linked to putative quantitative trait loci and morphological traits in a recent (<10000 years) zone of primary divergence between stickleback morphs in Lake Thingvallavatn, Iceland. Environmental factors, especially predation, are clearly implicated in reducing gene flow between morphs. There is continuous morphological and genetic variation between habitats with a zone centre similar to secondary contact zones. Individual microsatellite loci are implicated as being linked to adaptive variation by direct tests as well as by differences in cline shape. Patterns of linkage disequilibria indicate that the morphs have diverged at several loci. This divergence shows parallels and differences with the well-studied limnetic-benthic stickleback morphs, both in phenotypic divergence and at the genomic level. 相似文献
11.
Llopart A Lachaise D Coyne JA 《Evolution; international journal of organic evolution》2005,59(12):2602-2607
Abstract Despite the genetic tractability of many of Drosophila species, the genus has few examples of the “classic” type of hybrid zone, in which the ranges of two species overlap with a gradual transition from one species to another through an area where hybrids are produced. Here we describe a classic hybrid zone in Drosophila that involves two sister species, Drosophila yakuba and D. santomea, on the island of SaTo Tomé. Our transect of this zone has yielded several surprising and anomalous findings. First, we detected the presence of an additional hybrid zone largely outside the range of both parental species. This phenomenon is, to our knowledge, unique among animals. Second, the genetic analysis using diagnostic molecular markers of the flies collected in this anomalous hybrid zone indicates that nearly all hybrid males are F1s that carry the D. santomea X chromosome. This F1 genotype is much more difficult to produce in the laboratory compared to the genotype from the reciprocal cross, showing that sexual isolation as seen in the laboratory is insufficient to explain the genotypes of hybrids found in the wild. Third, there is a puzzling absence of hybrid females. We suggest several tentative explanations for the anomalies associated with this hybrid zone, but for the present they remain a mystery. 相似文献
12.
Eduardo Tadeo Jeffery L. Feder Scott P. Egan Hannes Schuler Martin Aluja Juan Rull 《Entomologia Experimentalis et Applicata》2015,156(3):301-311
Geography is often a key factor facilitating population divergence and speciation. In this regard, the geographic distributions of flies in the genus Rhagoletis (Diptera: Tephritidae) in temperate North America have been affected by cycles of Pleistocene glaciation and interglacial periods. Fluctuations in climatic conditions may have had their most dramatic effects on geographically isolating Rhagoletis flies in the central highland region of Mexico. During past periods of allopatry, a degree of post‐zygotic reproductive isolation appears to have evolved between hawthorn‐infesting populations of Rhagoletis pomonella (Walsh) in the central Eje Volcanico Trans Mexicano (EVTM) and those from the Sierra Madre Oriental Mountains (SMO) of Mexico, as well as hawthorn flies from the eastern USA. Here, we investigate the generality of this finding in the genus Rhagoletis by testing for reproductive isolation among populations of Rhagoletis cingulata (Loew) (Diptera: Tephritidae) collected from infested domesticated sweet cherry (Prunus avium L.) in the USA and black cherry [Prunus serotina Ehrh. (both Rosaceae)] from the SMO and EVTM. We report evidence for marked post‐mating reproductive isolation among certain R. cingulata populations. The high levels of reproductive isolation were observed between R. cingulata flies from populations in the USA and SMO differed from the pattern seen for R. pomonella, primarily involving the EVTM. In addition, egg hatch was significantly reduced for crosses between SMO males and EVTM females, but not greatly in the opposite direction. We discuss potential causes for the different patterns of post‐mating reproductive isolation among Rhagoletis flies. 相似文献
13.
Despite the recent renaissance in studies of ecological speciation, the connection between ecological selection and the evolution of reproductive isolation remains tenuous. We tested whether habitat adaptation of cytoplasmic genomes contributes to the maintenance of reproductive barriers in hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris. We transplanted genotypes of the parental species, reciprocal F1 hybrids and all eight possible backcross combinations of nuclear and cytoplasmic genomes into the contrasting xeric and mesic habitats of the parental species. Analysis of survivorship across two growing seasons revealed that the parental species' cytoplasms were strongly locally adapted and that cytonuclear interactions (CNIs) significantly affected the fitness and architecture of hybrid plants. A significant fraction of the CNIs have transgenerational effects, perhaps due to divergence in imprinting patterns. Our results suggest a common means by which ecological selection may contribute to speciation and have significant implications for the persistence of hybridizing species. 相似文献
14.
Forister ML 《Evolution; international journal of organic evolution》2005,59(5):1149-1155
Divergent natural selection contributes to reproductive isolation among populations adapting to different habitats or resources if hybrids between populations are intermediate in phenotype and suffer an associated, environmentally dependent reduction in fitness. This prediction was tested using two host races of Mitoura butterflies. Thirty-five F1 hybrid and parental lines were created, larvae were raised on the two host plants, and oviposition preferences were assayed in choice arenas. Larvae from both reciprocal hybrid crosses suffered a host-specific reduction in performance: when reared on incense cedar, hybrid survival was approximately 30% less than the survival of pure lines of the cedar-associated host race. The performance of hybrid larvae reared on the other host, MacNab cypress, was not reduced relative to parental genotypes. Females from both reciprocal hybrid crosses preferred to oviposit on incense cedar, the same host that resulted in the reduced survival of hybrid larvae. Thus, dominance is implicated in the inheritance of traits involved in both preference and performance, which do not appear to be genetically linked in Mitoura butterflies. Gene flow between host races may be reduced because the correlation between preference and performance that was previously described in parental populations is essentially broken by hybridization. 相似文献
15.
Florentine Riquet Cathy Liautard‐Haag Lucy Woodall Carmen Bouza Patrick Louisy Bojan Hamer Francisco Otero‐Ferrer Philippe Aublanc Vickie Bduneau Olivier Briard Tahani El Ayari Sandra Hochscheid Khalid Belkhir Sophie Arnaud‐Haond Pierre‐Alexandre Gagnaire Nicolas Bierne 《Evolution; international journal of organic evolution》2019,73(4):817-835
Diverging semi‐isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long‐snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry—i.e., in the same geographical zone—with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon‐like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus‐specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome‐wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome‐wide island of differentiation. Since Atlantic lineages do not map to lagoon‐sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts–i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system. 相似文献
16.
Thomas J. Richards Daniel Ortiz‐Barrientos 《Evolution; international journal of organic evolution》2016,70(6):1239-1248
Speciation proceeds when gene exchange is prevented between populations. Determining the different barriers preventing gene flow can therefore give insights into the factors driving and maintaining species boundaries. These reproductive barriers may result from intrinsic genetic incompatibilities between populations, from extrinsic environmental differences between populations, or a combination of both mechanisms. We investigated the potential barriers to gene exchange between three adjacent ecotypes of an Australian wildflower to determine the strength of individual barriers and the degree of overall isolation between populations. We found almost complete isolation between the three populations mainly due to premating extrinsic barriers. Intrinsic genetic barriers were weak and variable among populations. There were asymmetries in some intrinsic barriers due to the origin of cytoplasm in hybrids. Overall, these results suggest that reproductive isolation between these three populations is almost complete despite the absence of geographic barriers, and that the main drivers of this isolation are ecologically based, consistent with the mechanisms underlying ecological speciation. 相似文献
17.
Moyle LC 《Evolution; international journal of organic evolution》2008,62(12):2995-3013
The plant group Solanum section Lycopersicon (the clade containing the domesticated tomato and its wild relatives) is ideal for integrating genomic tools and approaches into ecological and evolutionary research. Wild species within Lycopersicon span broad morphological, physiological, life history, mating system, and biochemical variation, and are separated by substantial, but incomplete postmating reproductive barriers, making this an ideal system for genetic analyses of these traits. This ecological and evolutionary diversity is matched by many logistical advantages, including extensive historical occurrence records for all species in the group, publicly available germplasm for hundreds of known wild accessions, demonstrated experimental tractability, and extensive genetic, genomic, and functional tools and information from the tomato research community. Here I introduce the numerous advantages of this system for Ecological and Evolutionary Functional Genomics (EEFG), and outline several ecological and evolutionary phenotypes and questions that can be fruitfully tackled in this system. These include biotic and abiotic adaptation, reproductive trait evolution, and the genetic basis of speciation. With the modest enhancement of some research strengths, this system is poised to join the best of our currently available model EEFG systems. 相似文献
18.
Isaí Betancourt‐Resendes Rodolfo Pérez‐Rodríguez Omar Domínguez‐Domínguez 《Journal of Zoological Systematics and Evolutionary Research》2018,56(3):323-334
The high speciation rate of Chirostoma in Central Mexico has been associated with allopatric speciation events promoted by the emergence of vicariant barriers in freshwater habitats, as well as by sympatric ecological segregation, common in those species inhabiting lacustrine ecosystems. Through nuclear and mitochondrial markers, this study revealed a speciation process within Chirostoma attenuatum resulting in two evolutionary independent units that coincide with their morphological differentiation, indicating that Chirostoma attenuatum and Chirostoma zirahuen may be considered separate species. This process was the result of vicariance associated with geological dynamics of the region. Phylogeographic findings indicated two speciation stages: early allopatric isolation, during which the isolated populations accumulated unique adaptations, and secondary contact with low migration rate and the maintenance of the evolutionary trajectory. Historical demographic analysis indicated that the two well‐differentiated lineages underwent independent evolutionary histories in their respective lakes. Chirostoma zirahuen from Zirahuen and C. attenuatum from Patzcuaro represent unique and irreplaceable genetic diversity that must to be conserved. 相似文献
19.
Rundle HD 《Evolution; international journal of organic evolution》2002,56(2):322-329
Ecological speciation occurs when reproductive isolation evolves ultimately as a result of divergent natural selection between populations inhabiting different environments or exploiting alternative resources. I tested a prediction of the ecological model concerning the fitness of hybrids between two young, sympatric species of threespine sticklebacks (Benthics and Limnetics). The two species are ecologically and morphologically divergent: the Benthic is adapted to feeding on invertebrates in the littoral zone of the lake whereas the Limnetic is adapted to feeding on zooplankton in the open water. The growth rate of two types of hybrids, the Benthic backcross and the Limnetic backcross, as well as both parent species, was evaluated in enclosures in both parental habitats in the lake. The use of backcrosses is ideal because a comparison of their growth rates in the two habitats estimates an ecologically dependent component of their fitness while controlling for any intrinsic genetic incompatibilities that may exist between the Benthic and Limnetic genomes. The backcross results revealed a striking pattern of ecological dependence: in the littoral zone, Benthic backcrosses grew at approximately twice the rate of Limnetic backcrosses, while in the open water, Limnetic backcrosses grew at approximately twice the rate of Benthic backcrosses. Such a reversal of relative fitness of the two cross-types in the two environments provides strong evidence that divergent natural selection has played a central role in the evolution of postmating isolation between Benthics and Limnetics. Although the rank order of growth rates of all cross-types in the littoral zone was Benthic > Benthic backcross > Limnetic backcross > Limnetic, neither backcross differed significantly from the parent from which it was mainly derived. Implications of this result are discussed in terms of ecological speciation and possible introgressive hybridization between the species. Results in the open water were less clear and were not fully consistent with the ecological model of speciation, mainly as a result of the low growth rate of Limnetics. However, analysis of the diet of the fish in the open water suggests that these enclosures may not have been fully successful at replicating the food regimes characteristic of this habitat. 相似文献
20.
M. TOBLER R. RIESCH C. M. TOBLER T. SCHULZ‐MIRBACH M. PLATH 《Journal of evolutionary biology》2009,22(11):2298-2304
Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence lead to speciation. But what mechanisms contribute to reproductive isolation among diverging populations? We tested for natural and sexual selection against immigrants in a fish species inhabiting (and adapting to) nonsulphidic surface habitats, sulphidic surface habitats and a sulphidic cave. Gene flow is strong among sample sites situated within the same habitat type, but low among divergent habitat types. Our results indicate that females of both sulphidic populations discriminate against immigrant males during mate choice. Furthermore, using reciprocal translocation experiments, we document natural selection against migrants between nonsulphidic and sulphidic habitats, whereas migrants between sulphidic cave and surface habitats did not exhibit increased mortality within the same time period. Consequently, both natural and sexual selection may contribute to isolation among parapatric populations, and selection against immigrants may be a powerful mechanism facilitating speciation among locally adapted populations even over very small spatial distances. 相似文献