首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Opportunism and specialization appear to be widespread in apoid wasps, although the factors affecting the diet preference (and thus explaining the degree of specialization) are still largely unknown. Four hypotheses that stressed the importance of the size, sex, habitat, and taxonomic identity of prey of the beetle‐hunting digger wasp, Cerceris rubida, were formulated and tested. The wasp population hunted for phytophagous beetles belonging to abundant families around the wasp nesting site. In practice, the prey appeared to be hunted only in two cultivated fields, thus habitat accounted for a majority of the observed diet. The size of wasps was furthermore correlated with the size of their prey, and thus this also accounted for the frequencies of hunted prey and the strong individual specialization for both taxa and size. However, in the exploited habitat, some species were significantly over‐hunted than expected and some other significantly avoided by the wasps, causing an unexpected major role of prey taxon on the probability of being hunted, over the other explanatory variables (body size, body shape, sex, availability). This contrasts to that found in other wasp species, which appear to select prey basing essentially on their ecology and size or their relative abundance (opportunism). The results obtained in the present study show that even an apparent ‘generalist’ predator may turn out to be taxonomically specialized. Together with a re‐evaluation of previous studies, our results further suggest that the effect of size constraints and the developmental plan of prey (holometaboulous versus hemimetabolous) may have promoted either taxonomic opportunism or specialization in different lineages of apoid wasps. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 544–558.  相似文献   

2.
Using museum specimens, we studied recent changes in skull size of the American marten Martes americana , in continental Alaska. In Alaska, global warming has resulted in milder winters that may contribute to an improved food supply in the wild. In the present study, we tested the hypothesis that body size of the marten had increased during the second half of the 20th century, in response to global warming. We found that skull size, and by implication body size, increased significantly during the second half of the 20th century, possibly due to an improved food supply and/or lower metabolic demands in winter. Improved food availability in winter may result from the improved nutritional conditions for prey, and/or from increased access to prey resulting from a longer snow-free season. Longitude had a significant positive effect on skull size and a significant negative effect on teeth size. In Alaska, the climate is milder along the western coast and becomes harsher inland. Hence, the milder climate was associated with larger body size providing further support for our prediction that body size of the American marten was influenced by food availability and reduced energy expenditure. The negative relationship between longitude and teeth size may indicate a trend towards a larger prey in inland marten populations, but we have no data to support or refute this hypothesis.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 701–707.  相似文献   

3.
The hawk owl genus Ninox is unique among raptorial birds in that it includes three species in which males are substantially larger than females. This is a reversal of the normal pattern observed in both diurnal and nocturnal raptorial birds in which females are larger. Interestingly, these three Ninox species also are both the largest of the 22 species in the genus and the only species that exhibit the striking behaviour of ‘prey holding’ in which large (> 600 g) mammalian or avian prey is captured at night and held with body parts intact, and draped below a roost for the entire day without being consumed. Because explanations of the evolution of large male size suggest that it results from competition among males, the adaptive significance of prey holding was studied in a wild population of powerful owl Ninox strenua. Prey holding is largely confined to breeding males and its occurrence varies significantly across the breeding cycle, being most frequent during incubation and brooding. The study did not clearly resolve whether prey holding is a form of food storage or territorial display; however, both functions can select for large male body size and therefore play a significant role in the evolution of nonreversed size dimorphism. Although female‐only incubation and brooding is typical of Ninox owls and other owl species, prey holding appears to occur only in the large Ninox species because of the unique combination of large body size, large prey size, separate sex roles, and obligate cavity nesting. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 284–292.  相似文献   

4.
Body size and coloration may contribute to variation in performance and fitness among individuals; for example, by influencing vulnerability to predators. Yet, the combined effect of size and colour pattern on susceptibility to visual predators has received little attention, particularly in camouflaged prey. In the colour polymorphic pygmy grasshopper Tetrix subulata (Linnaeus, 1758), females are larger than males, although there is a size overlap between sexes. In the present study, we investigated how body size and colour morph influenced detection of these grasshoppers, and whether differences in protective value among morphs change with size. We conducted a computer‐based experiment and compared how human ‘predators’ detected images of large, intermediate or small grasshoppers belonging to black, grey or striped colour morphs when embedded in photographs of natural grasshopper habitats. We found that time to detection increased with decreasing size, that differences in time to detection of the black, grey and striped morphs depended differently on body size, and that no single morph provided superior or inferior protection in all three size classes. By comparing morph frequencies in samples of male and female grasshoppers from natural populations, we also examined whether the joint effects of size and colour morph on detection could explain evolutionary dynamics in the wild. Morph frequency differences between sexes were largely in accordance with expectations from the results of the detection experiment. The results of the present study demonstrate that body size and colour morph can interactively influence detection of camouflaged prey. This may contribute to the morph frequency differences between male and female pygmy grasshoppers in the wild. Such interactive effects may also influence the dynamics of colour polymorphisms, and contribute to the evolution of ontogenetic colour change and sexual dichromatism. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 112–122.  相似文献   

5.
Interpopulation differences in body size are of common occurrence in vertebrates, but the relative importance of genetic, maternal, and environmental effects as causes of observed differentiation have seldom been assessed in the wild. Gigantism in pond nine‐spined sticklebacks (Pungitius pungitius Linnaeus, 1758) has been repeatedly observed, but the quantitative genetic basis of population divergence in size has remained unstudied. We conducted a common garden experiment – using ‘pure’ and reciprocal crosses between two populations (‘giant’ pond versus ‘normal’ marine) – to test for the relative importance of additive genetic, non‐additive genetic, and maternal effects on body size after 11 months of growth in the laboratory. We found that body size difference between the two populations in laboratory conditions owed mainly to additive genetic effects, and only to a minor degree to maternal effects. Furthermore, the weak maternal effects were seen only in the offspring of ‘giant’ mothers, and appeared to be mediated through differences in egg size. Thus, the results suggest that gigantism in pond populations of P. pungitius is based on the effects of additively acting genes, rather than to direct environmental induction, or maternal or non‐additive gene action. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 521–528.  相似文献   

6.
Due to the ‘double‐clutch’ mating system found in the arctic‐breeding Little Stint Calidris minuta, each parent cares for a clutch and brood alone. The resulting constraint on feeding time, combined with the cold climate and a small body size, may cause energetic bottlenecks. Based on the notion that mass stores in birds serve as an ‘insurance’ for transient periods of negative energy balance, but entail certain costs as well, body mass may vary in relation to climatic conditions and stage of the breeding cycle. We studied body mass in Little Stints in relation to breeding stage and geographical location, during 17 expeditions to 12 sites in the Eurasian Arctic, ranging from north Norway to north‐east Taimyr. Body mass was higher during incubation than during chick‐rearing. Structural size, as estimated by wing length, increased with latitude. This was probably caused by relatively more females (the larger sex) incubating further north, possibly after leaving a first clutch to be incubated by a male further south. Before and after correction for structural size, body mass was strongly related to latitude during both incubation and chick‐rearing. In analogy to a similar geographical pattern in overwintering shorebirds, we interpret the large energy stores of breeding Little Stints as an insurance against periods of cold weather which are a regular feature of arctic summers. Climate data showed that the risk of encountering cold spells lasting several days increases with latitude over the species’ breeding range, and is larger in June than in July. Maintaining these stores is therefore less necessary at southern sites and during the chick‐rearing period than in the incubation period. When guarding chicks, feeding time is less constrained than during incubation, temperatures tend to be higher than in the incubation period, reducing energy expenditure, and the availability of insect prey reaches a seasonal maximum. However, the alternative interpretation that the chick‐tending period is more energetically stressful than the incubation period, resulting in a negative energy balance for the parent, could not be rejected on the present evidence.  相似文献   

7.
The relative influence of consumers (top down) and resources (bottom up) on the distribution and abundance of organisms remains a key question in ecology. We examined the relationships between consumer and resource variables along a productivity gradient for a dominant predator–prey interaction in a marine soft‐sediment system. We 1) quantified density and size of the clam Macoma balthica (prey species) in six replicate sites at each of four habitat types (shallow mud, deep mud, muddy sand and detrital mud) in the Rhode River, Chesapeake Bay. We selected one habitat type of high food availability and clam density (shallow mud) and another of low food availability and clam density (muddy sand) for manipulative experiments. Then, we 2) measured M. balthica survival and growth through transplants, 3) measured food availability as sedimentary organic carbon content, 4) quantified predator density, and 5) calculated predator foraging efficiency in the two habitat types. Clam density in the four habitat types differed and was related to sedimentary carbon availability and predator density. One of the habitats, detrital mud, appeared to be a population sink because it only held juvenile Macoma that never survived to reproductive age. Macoma size and growth, and predator (mainly blue crab Callinectes sapidus) densities were positively correlated with productivity and were higher in shallow mud than muddy sand. In contrast, Macoma mortality, local ‘interaction strength’, and predator foraging efficiency were lower in the productive habitat (shallow mud). Thus, predation intensity was inversely correlated with productivity (food availability); consumer and resource effects differed by habitat type; and, at a relatively small spatial scale, consumer and resource forces jointly determined population dynamics in this soft‐sediment marine system.  相似文献   

8.
Body size is evolutionarily constrained, but the influence of phylogenetic relationships on global body size (i.e. body mass) gradients is unexplored. We quantify and map the family‐level phylogenetic and non‐phylogenetic structure of the global gradient of birds, evaluating the extent to which it is influenced by phylogenetic inertia in contrast to heat conservation, resource availability, starvation resistance, niche conservatism, or interspecific competition. Phylogenetic eigenvector regression (PVR) partitioned the global bird body size gradient into phylogenetically autocorrelated (PA) and phylogenetically independent (PI) components. Simple, piecewise, and partial regressions were used to investigate associations between the PA and PI components of body size and environmental correlates, and to quantify independent and overlapping contributions of environment, phylogenetic autocorrelation, and species richness to the body size gradient. Two‐thirds of the geographic variation in bird body size can be explained by phylogenetic relationships at the family level. The global variation in body size, independent of phylogenetic relationships, is most strongly associated with net primary productivity, which is consistent with ‘starvation resistance’. However, the New and Old worlds have very different patterns. We found no independent association of species richness with body size. Despite major unresolved regional differences, deep phylogenetic relationships, heat conservation, and starvation resistance probably operate in concert in shaping the global bird body size gradient in different parts of the world. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
Sexual size dimorphism (SSD) is a widespread phenomenon in different animal taxa, including the subfamily of goats and sheep (Caprinae), which belongs to the most dimorphic mammalian groups. Rensch's rule describes the pattern of SSD, claiming that larger species generally exhibits higher male to female body size ratio. Agreement with Rensch's rule is manifested by slope of the allometric relationship between male and female body size exceeding one. To test this rule, we analysed the data available in the literature on adult body mass of males and females in domestic goat and sheep breeds (169 and 303, respectively) and 37 wild species/subspecies of the subfamily Caprinae. According to the current phylogenetical hypotheses, there are six distinct monophyletic groups with different levels of SSD (expressed as M/F): (1) wild goats (1.83); (2) wild sheep (1.67); (3) non‐European chamoises, including Ovibos moschatus (1.18); (4) European chamoises (1.27); (5) Budorcas taxicolor (1.01); and (6) Pantholops hodgsonii (1.65). Domestication has led to a remarkable decline in SSD of both domestic goats (1.36) and sheep (1.41). The highest regression slope of the relationship between male and female body size is that estimated for wild goats (1.32), followed by wild sheep (1.24), non‐European chamoises (1.14), domestic sheep (1.13), and domestic goats (1.10). Nevertheless, only the last two values are statistically different from one and thus corroborate Rensch's rule. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 872–883.  相似文献   

10.
Songbirds in seasonal environments often adjust their breeding strategy according to spatial or temporal changes in breeding conditions. Here we investigate how horned larks Eremophila alpestris, a multi‐brooded songbird on the Tibetan Plateau, responded to the changing risk of nest predation and food availability across breeding attempts. We showed that both nest concealment and food supply increased with plant growth, and horned larks adjusted their breeding strategies accordingly. First they selected nest‐sites where predator density was low, which enhanced nest survival. Second, clutch size increased with improving breeding conditions. They did not adopt an ‘egg‐size’ strategy as egg size did not change with laying sequence or breeding attempt. Instead, they adopted the ‘brood survival (feeding later‐hatched nestlings more)’ and ‘brood reduction (feeding early‐hatched nestlings more)’ strategies during early and later attempts. Moreover, nestlings’ growth varied with breeding attempt: more energy was invested into the growth of body mass during the first attempt but more energy was expended on the growth of linear structures during later attempts. This difference in energy allocation reflected changing food availability. We suggest that temporal changes of environmental factors are also the important force driving the evolution of avian breeding strategies.  相似文献   

11.
Experimental evidence on the determinants of prey vulnerability is scarce, especially for vertebrates in the field. Invasive species offer robust opportunities to explore prey vulnerability, because the intensity of predation on or by such animals has not been eroded by coevolution. Around waterbodies in tropical Australia, native meat ants (Iridomyrmex reburrus) consume many metamorph cane toads (Bufo marinus, an invasive anuran). We document the determinants of toad vulnerability, especially the roles of toad body size and ant density. Larger metamorphs were attacked sooner (because they attracted more ants), but escaped more often. Overall, smaller toads were more likely to be killed. Ant densities influenced toad responses, as well as attack rate and success. Data on the immediate outcomes of attacks underestimate mortality: more than 73% of apparent ‘escapees’ died within 24 h. Because mortality during this period was independent of toad size, predation was less size selective than suggested by immediate outcomes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 738–751.  相似文献   

12.
We investigated how predator/prey body‐size ratio and prey colour pattern affected efficacy of prey warning signals. We used great and blue tits (Parus major and Cyanistes caeruleus), comprising closely related and ecologically similar bird species differing in body size, as experimental predators. Two larval instars and adults of the unpalatable red firebug (Pyrrhocoris apterus), differing in body size and/or coloration, were used as prey. We showed that prey body size did not influence whether a predator attacked the prey or not during the first encounter. However, smaller prey were attacked, killed, and eaten more frequently in repetitive encounters. We assumed that body size influences the predator through the amount of repellent chemicals better than through the amount of optical warning signal. The larger predator attacked, killed and ate all forms of firebug more often than the smaller one. The difference between both predators was more pronounced in less protected forms of firebug (chemically as well as optically). Colour pattern also substantially affected the willingness of predators to attack the prey. Larval red–black coloration did not provide a full‐value warning signal, although a similarly conspicuous red‐black coloration of the adults reliably protected them. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 890–898.  相似文献   

13.
Consistent responses by various organisms to common environmental pressures represent strong evidence of natural selection driving geographical variation. According to Bergmann's and Allen's rules, animals from colder habitats are larger and have smaller limbs than those from warmer habitats to minimize heat loss. Although evidence supporting both rules in different organisms exists, most studies have considered only elevational or latitudinal temperature gradients. We tested for the effects of temperature associated with both elevation and latitude on body and appendage size of torrent ducks (Merganetta armata), a widespread species in Andean rivers. We found a negative relationship between body size and temperature across latitude consistent with Bergmann's rule, whereas there was a positive relationship between these variables along replicate elevational gradients at different latitudes. Limb‐size variation did not support Allen's rule along latitude, nor along elevation. High‐elevation ducks were smaller and had longer wings than those inhabiting lower elevations within a river. We hypothesize that temperature is likely a major selective pressure acting on morphology across latitudes, although hypoxia or air density may be more important along elevational gradients. We conclude that the effect of temperature on morphology, and hence the likelihood of documenting ecogeographical ‘rules’, depends on the environmental context in which temperature variation is examined. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 850–862.  相似文献   

14.
Brian K. McNab 《Oecologia》2010,164(1):13-23
The tendency of mammals to increase or decrease body size with respect to geography or time depends on the abundance, availability, and size of resources. This dependency accounts for a change in mass with respect to geography, including latitude (Bergmann’s rule), a desert existence, and life on oceanic islands (the island rule), as well as in a seasonal anticipation of winter (Dehnel’s phenomenon) and a tendency for some lineages to increase in mass through time (Cope’s rule). Such a generalized pattern could be called the “resource rule,” reflecting the controlling effect of resource availability on body mass and energy expenditure. The correlation of mammalian size with geography and time reflects the impact of temperature, rainfall, and season on primary production, as well as the necessity in the case of some species to share resources with competitors. The inability of the constituent “rules” to account for all size trends often results from unique patterns of resource availability.  相似文献   

15.
The time taken to manipulate and swallow a prey item, termed ‘handling time’, increases with decreasing hunger in Spinachia spinachia (L.), Handling time is also dependent upon the size of the prey in relation to the size of the mouth. Estimates of the optimum prey size, defined as that prey which minimizes the value of the ‘cost/benefit’ ratio of handling time/mg dry weight of prey, agrees closely with the mean prey sizes of wild fish. Optimum prey size was found to be approximately half the maximum swallowing capacity of the mouth. The nature of the relationship between the cost/benefit ratio and prey weight was used to explain the facts that the size range of prey eaten is dependent upon fish length and that decreasing hunger results in fish becoming increasingly selective with respect to prey size.  相似文献   

16.
The idea that free‐living minute organisms have ubiquitous distributions has been recently revitalized, causing significant controversy. The ubiquitous model predicts that a threshold where ubiquity leaves room to biogeography might exist somewhere along the animal body‐size range. In the present study, such a prediction is tested by analysing body‐size frequency distribution, species distribution, and local‐to‐global species ratio at the scale of biogeographical realms in cypridoidean non‐marine ostracods, a group with a body‐size range in the ubiquity–biogeography (U‐B) boundary. Data were gathered for all described extant cypridoidean ostracod species (N = 1761), with body‐size recorded for 1134 of them. Although local‐to‐global species ratios show significant over‐dispersal of small‐body ostracods for the Palaearctic and the Australasian regions, there are explanations alternative to the ‘Everything is Everywhere’ model that can account for such a result. Indicators of taxonomic structure do not support the hypothesis of a random distribution of cypridoidean species among realms. Nevertheless, the strong biogeography signal occurring at a large scale vanishes at the local scale (country‐level within the Palaearctic), and suggests wide dispersion within biogeographical realms. Additional factors, including inconsistent taxonomic criteria for species recognition, uneven sampling effort, and an excess of ‘single‐report’ occurrences, have been identified too as potential distorters of the observed patterns. Taxonomic harmonization, open databases of biogeographical data, and better ecological information are suggested as critical goals that need to be achieved for further understanding of ostracod global distribution patterns. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 409–423.  相似文献   

17.
Reproduction often comes at a cost of a reduction in body functions. In order to enhance their reproductive output, some insect species degenerate their thoracic muscles, typically resulting in reduced flight ability. From a life‐history trade‐off perspective, we expect the importance of body resource utilization to be amplified both with increased reproductive expenditure and with increased resource limitation. In this study, we measured age‐related changes in thorax weight, as a measure of flight muscle size, during a major part of the adult lifespan in males and females of the scorpionfly Panorpa vulgaris. The aim of the study was twofold: first to investigate whether scorpionflies have the potential to degenerate their flight muscles; second, and more importantly, to determine whether the magnitude of flight muscle degeneration is a plastic response in relation to resource availability, and if it differs between the sexes. The results clearly demonstrate that food availability does influence investment in flight muscle development. The build‐up of the thoracic muscles was strongly influenced by nutrient availability. Furthermore, the age‐related decrease in thorax weight was significantly different for males and females. Only females showed a strong age‐dependent decrease in thorax weight, indicative of muscle degeneration, yet no difference between food treatments was detected. For males, there was no significant directional change in thorax weight. Nevertheless, with increasing age, the difference in thorax weight between food treatments increased significantly. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 199–207.  相似文献   

18.
Sexual dimorphism is usually interpreted in terms of reproductive adaptations, but the degree of sex divergence also may be affected by sex-based niche partitioning. In gape-limited animals like snakes, the degree of sexual dimorphism in body size (SSD) or relative head size can determine the size spectrum of ingestible prey for each sex. Our studies of one mainland and four insular Western Australian populations of carpet pythons ( Morelia spilota ) reveal remarkable geographical variation in SSD, associated with differences in prey resources available to the snakes. In all five populations, females grew larger than males and had larger heads relative to body length. However, the populations differed in mean body sizes and relative head sizes, as well as in the degree of sexual dimorphism in these traits. Adult males and females also diverged strongly in dietary composition: males consumed small prey (lizards, mice and small birds), while females took larger mammals such as possums and wallabies. Geographic differences in the availability of large mammalian prey were linked to differences in mean adult body sizes of females (the larger sex) and thus contributed to sex-based resource partitioning. For example, in one population adult male snakes ate mice and adult females ate wallabies; in another, birds and lizards were important prey types for both sexes. Thus, the high degree of geographical variation among python populations in sexually dimorphic aspects of body size and shape plausibly results from geographical variation in prey availability.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 113–125.  相似文献   

19.
Body size shapes ecological interactions across and within species, ultimately influencing the evolution of large‐scale biodiversity patterns. Therefore, macroecological studies of body size provide a link between spatial variation in selection regimes and the evolution of animal assemblages through space. Multiple hypotheses have been formulated to explain the evolution of spatial gradients of animal body size, predominantly driven by thermal (Bergmann's rule), humidity (‘water conservation hypothesis’) and resource constraints (‘resource rule’, ‘seasonality rule’) on physiological homeostasis. However, while integrative tests of all four hypotheses combined are needed, the focus of such empirical efforts needs to move beyond the traditional endotherm–ectotherm dichotomy, to instead interrogate the role that variation in lifestyles within major lineages (e.g. classes) play in creating neglected scenarios of selection via analyses of largely overlooked environment–body size interactions. Here, we test all four rules above using a global database spanning 99% of modern species of an entire Order of legless, predominantly underground‐dwelling amphibians (Gymnophiona, or caecilians). We found a consistent effect of increasing precipitation (and resource abundance) on body size reductions (supporting the water conservation hypothesis), while Bergmann's, the seasonality and resource rules are rejected. We argue that subterranean lifestyles minimize the effects of aboveground selection agents, making humidity a dominant selection pressure – aridity promotes larger body sizes that reduce risk of evaporative dehydration, while smaller sizes occur in wetter environments where dehydration constraints are relaxed. We discuss the links between these principles with the physiological constraints that may have influenced the tropically‐restricted global radiation of caecilians.  相似文献   

20.
Studies on predation by the wolf (Canis lupus) have often reported contradictory results about the role of prey density and vulnerability on wolf prey use. We investigated dietary response and prey selection by wolves in a high-density and multi-species ungulate community, analysing scats collected over a period of 11 years in the Casentinesi Forests, Italy. The second most abundant species, wild boar (Sus scrofa), was found to be the main wolf prey, and we did not observe any dietary response of wolves to variations in the density of either primary or secondary prey species. Selection patterns were uniform throughout the study period. Wolves strongly selected for wild boar piglets, while roe deer (Capreolus capreolus) fawns and adults, red deer (Cervus elaphus) adults and fallow deer (Dama dama) adults were avoided. Wolf preference for wild boar was inversely density dependent. Within each species, juveniles were preferred to adults. Medium-sized, young individuals of both wild boar and roe deer were optimal prey, although with different selection patterns related to the different anti-predator strategies adopted by each prey species. The results of this study suggest that in productive ecosystems with high density and high renewal rates of prey, selection patterns by wolves are determined by prey vulnerability, which is connected to prey age and body size. The different patterns of wild boar versus cervids use by wolf across Europe seems to be related to their relative abundances, while the strong selection of wild boar in Italian Apennines with respect to the more frequent avoidance in central-eastern Europe is better explained by higher piglet productivity and smaller body size of adults boar in Mediterranean temperate forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号