首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Floral scent, often a complex mixture of several volatile organic compounds (VOCs), has generally been interpreted as an adaptation to attract pollinators. However, not many studies have analysed which VOCs are functionally relevant for the reproductive success of a plant. Here, we show that, in Salix caprea (Salicaceae), temporal changes in floral scent emission during the day and night attract two different types of flower visitor: bees during the day and moths during the evening and night. We analysed the contribution of the two flower visitor groups to the reproductive success of the plant. The differences in scent emitted during the peak activity times of flower visitors (day versus night) were quantified and the response of 13 diurnal/nocturnal pollinator taxa to the floral scents was tested using gas chromatographic and electroantennographic techniques. Many of the c. 40 identified scent compounds were physiologically active, and bees and moths responded to nearly identical sets of compounds, although the response strengths differed. In bioassays, bees preferred the most abundant 1,4‐dimethoxybenzene over lilac aldehyde, a compound with increased emission at night, whereas moths preferred lilac aldehyde over 1,4‐dimethoxybenzene. Pollination by wind plus nocturnal pollinators (mainly moths) or by wind alone contributed less to seed set than pollination by wind plus diurnal pollinators (mainly bees). This suggests that the emission of scent during the night and attracting moths have no significant effect on reproductive success. It is possible that the emission of lilac aldehydes and other compounds at night is s result of phylogenetic constraints. Future studies should investigate whether moths may produce a marginal fitness gain in some years and/or some populations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 624–640.  相似文献   

2.
Nursery pollination in Caryophyllaceae species by Hadena and Perizoma moths has been extensively described in the last few decades. Evidence across multiple pairs of species shows that such pollination systems constitute relatively specialized interactions, shifting between parasitism and mutualism depending on the presence of effective co‐pollinators. In this work, we describe a new specific Silene–Hadena interaction, the Silene ciliata–Hadena consparcatoides system. Although S. ciliata presents a typical nocturnal pollination syndrome, diurnal flower visitors have also been recorded, which motivated us to evaluate the costs and benefits of this nursery moth pollination to the plant. We experimentally induced two pollination regimes at non‐overlapping day‐night periods in a natural population of S. ciliata, and compared their effects on plant reproductive success from flower to seedling stages. Flower scent composition of S. ciliata and antennal responses of H. consparcatoides to this scent were recorded to evaluate the specificity of olfactory signals in this interaction system. In accordance with its nocturnal pollination syndrome, S. ciliata emitted a greater amount of flower scent compounds during the night. Some of the predominant scent compounds, such as benzaldehyde, benzyl acetate and methyl salicylate elicited signals in the antennae of H. consparcatoides. Diurnal pollination produced more fruits per flower than nocturnal pollination, but the latter produced higher brood size resulting in similar overall fecundity. However, seeds generated from diurnal pollination were heavier and germinated better. We conclude that despite its nocturnal pollination syndrome, S. ciliata achieved similar reproductive success and higher offspring vigour under the diurnal pollinator regime. Although H. consparcatoides is specialized in S. ciliata, its shortage or absence would not jeopardize the reproductive success of its host plant. On the contrary, the seed predation exerted by this nursery pollinator shifts the interaction towards parasitism.  相似文献   

3.
Plants are expected to emit floral scent when their pollinators are most active. In the case of long‐tubed flowers specialised for pollination by crepuscular or nocturnal moths, scent emissions would be expected to peak during dawn. Although this classic idea has existed for decades, it has rarely been tested quantitatively. We investigated the timing of flower visitation, pollination and floral scent emissions in six long‐spurred Satyrium species (Orchidaceae). We observed multiple evening visits by pollinaria‐bearing moths on flowers of all study species, but rarely any diurnal visits. The assemblages of moth pollinators differed among Satyrium species, even those that co‐flowered, and the lengths of moth tongues and floral nectar spurs were strongly correlated, suggesting that the available moth pollinator fauna is partitioned by floral traits. Pollinarium removal occurred more frequently during the night than during the day in four of the six species. Scent emission, however, was only significantly higher at dusk than midday in two species. Analysis of floral volatiles using gas chromatography coupled with mass spectrometry yielded 168 scent compounds, of which 112 were species‐specific. The scent blends emitted by each species occupy discrete clusters in two‐dimensional phenotype space, based on multivariate analysis. We conclude that these long‐spurred Satyrium species are ecologically specialised for moth pollination, yet the timing of their scent emission is not closely correlated with moth pollination activity. Scent composition was also more variable than expected from a group of closely related plants sharing the same pollinator functional group. These findings reveal a need for greater understanding of mechanisms of scent production and their constraints, as well as the underlying reasons for divergent scent chemistry among closely related plants.  相似文献   

4.
Ipomoea habeliana is an endemic, night‐flowering member of the Galápagos flora. Pollination experiments, flower‐visitor observations, nectar sampling, pollen transfer, and pollen to ovule ratio and pollen size studies were included in this project. The large, white flowers of this species set fruit via open pollination (55%), autonomous autogamy (51%), facilitated autogamy (91%), cross‐pollination (80%), diurnal open pollination (60%) and nocturnal open pollination (60%). Fruit set is pollen‐limited. Ants, beetles, crickets and hawk moths regularly visit the flowers. Ants are the most frequent visitors, but hawk moths are the only effective pollinators. Nectar is available throughout the night, but is most abundant early in the evening when hawk moth visits are most frequent. Experiments with fluorescent dust demonstrate intra‐ and inter‐plant pollen movement by hawk moths. Although this species is adapted for hawk moth pollination, it readily sets fruit via autonomous autogamy when no visits are made. Thus, it is concluded that it is facultatively xenogamous. Additional support for this conclusion is provided by the pollen to ovule ratio of 1407 and by the fact that the plants grow in a region that has few or no faithful pollinators. Conservation efforts for I. habeliana should include hand pollinations, which could significantly increase seed set. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 11–20.  相似文献   

5.
Many insect-pollinated plants use floral scent signals to attract and guide the effective pollinators, and temporal patterns of their floral scent emission may be tuned to respond to the pollinator's activity and pollination status. In the intimate nursery pollination mutualism between monoecious Glochidion trees (Phyllanthaceae) and Epicephala moths (Gracillariidae), floral scent signals mediate species-specific interactions and influence the moth's efficient pollen-collecting and pollen-depositing behaviors on male and female flowers, respectively. We tested the hypotheses that both sexes of flowers of Epicephala-pollinated Glochidion rubrum exhibit a diel pattern of scent emission matching the activity period of the nocturnally active pollinator, and that female flowers change the chemical signal after pollination to reduce further visits and oviposition by the pollinator. We investigated the diel change of floral scent emissions during two consecutive days and the influence of pollination on the floral scent by conducting hand-pollinations in the field. The total scent emission of male and female flowers was higher at night than in the day, which would be expected from the nocturnal visitations of Epicephala moths. Some compounds exhibited a clear nocturnal emission rhythm. Hand-pollination experiments revealed that emission of two compounds, nerolidol and eugenol, drastically decreased in pollinated flowers, suggesting that these compounds may function as key attractants for the pollinator; however, the total scent emission of the female flower was not influenced by hand-pollination. The pattern of the floral scent emission of G. rubrum may be optimized to attract nocturnal pollinators and reduce oviposition.  相似文献   

6.
Floral color change in diverse plants has been thought to be a visual signal reflecting changes in floral rewards, promoting pollinator foraging efficiency as well as plant reproductive success. It remains unclear whether olfactory signals co-vary with floral color change. We investigated the production rhythms of floral scent and nectar associated with floral color change in Lonicera japonica. The flowers generally last 2–3 days. They are white on opening at night (N1) and become light yellow the following day (D1), yellow on the second night (N2), and golden on the second day of flowering (D2). Our measurements in the four stages indicated that nectar production decreased significantly from N1 and D1 to N2 and D2, tracking the floral color change. A total of 34 compounds were detected in floral scent and total scent emission was significantly higher in N2 than in the other three stages. The scent emission of three major compounds, Linalool, cis-3-Hexenyl tiglate, and Germacrene D was also significantly higher in N2, but the relative content of Linalool decreased gradually, cis-3-Hexenyl tiglate increased gradually, and the relative content of Germacrene D did not differ among the four measured stages. Greater scent emission by night than by day suggested a strong olfactory signal to attract nocturnal hawkmoths, the effective pollinators. However, floral scent rhythms in the four stages did not match the color change and nectar secretion, suggesting that floral color (visual) and scent (olfactory) in this species may play different roles in attracting or filtering various visitors.  相似文献   

7.
  • The discrepancy between observed flower visitors and those predicted based on floral phenotype has often cast doubt on the pollination syndrome concept. Here we show that this paradox may be alleviated by gaining better knowledge of the contributions of different flower visitors to pollination and the effects of floral traits that cannot be readily perceived by humans in Adenophora triphylla var. japonica. The blue, bell‐shaped and pendant flowers of Atriphylla appear to fit a bee pollination syndrome. In contrast to this expectation, recent studies show that these flowers are frequented by nocturnal moths.
  • We compared the flower visitor fauna, their visitation frequency and their relative contributions to seed set between day and night in two field populations of A. triphylla in Japan. We also determined the floral traits associated with temporal changes in the visitor assemblage, i.e. the timing of anthesis, the timing of changes in the sexual phase and the diel pattern of nectar production.
  • While Atriphylla flowers were visited by both diurnal and nocturnal insects, the results from pollination experiments demonstrate that their primary pollinators are nocturnal settling‐moths. Moreover, the flowers opened just after sunset, changed from staminate to pistillate phase in successive evenings and produced nectar only during the night, which all conform to the activity of nocturnal/crepuscular moths.
  • Our study illustrates that the tradition of stereotyping the pollinators of a flower based on its appearance can be misleading and that it should be improved with empirical evidence of pollination performance and sufficient trait matching.
  相似文献   

8.
Floral traits such as color and size are highly diversified in lilies, but their adaptive significance remains uncertain. In the present study, we compared pollination processes between Lilium japonicum var. abeanum and var. japonicum to clarify how the two varieties are adapted to different pollinators. Lilium japonicum var. japonicum is known to be pollinated by moths, and we hypothesized from its flower traits that var. abeanum is pollinated by diurnal insects. Using waterproof digital cameras set to a recording interval of 10–30 s, we recorded flower visitors for 7–9 flowers of var. japonicum and 4–6 flowers of var. abeanum over 24‐h periods. We also recorded the number of versatile (T‐shaped) and rigid (I‐shaped) anthers per flower. For var. abeanum, we observed flowers at 05.00 and 17.00 hours to determine flower opening time and measured the intensity of floral scent using a metal‐oxide semi‐conductor odor sensor. Both diurnal and nocturnal insects visited flowers of the two varieties, but visitation of diurnal insects was more frequent in var. abeanum. Anthers of var. abeanum are usually rigid, as in many bee‐pollinated flowers, whereas those of var. japonicum are mostly versatile. Although flowers of var. japonicum are known to open in the evening, 32% of the flowers of var. abeanum started to flower during the day. Lilium japonicum var. abeanum emitted scent at night, with a maximum intensity at 20.00 hours, just as in var. japonicum. These findings suggest that the floral traits of the two varieties are adapted to the different relative availabilities of nocturnal versus diurnal pollinators. The flower of var. abeanum is more adapted to diurnal pollinators, but retains adaptations to nocturnal pollinators, particularly with regard to its scent.  相似文献   

9.
The monoterpene lilac aldehyde (=2‐(5‐ethenyl‐5‐methyloxolan‐2‐yl)propanal) is a widespread flower scent. Lilac aldehyde is emitted in high amounts from nocturnal plant species, and it is highly attractive to nocturnal moth pollinators, such as Hadena bicruris, the pollinating seed predator of Silene latifolia. Lilac aldehyde possesses three stereogenic centers and can occur in eight stereoisomers which induce different antennal responses in H. bicruris. The distribution pattern of stereoisomers differs among plant species, and if H. bicruris has different receptors for detecting different isomers, it may use these differences to discriminate flowers of S. latifolia hosts from flowers of non‐host plants. To investigate the question whether the moths have in their antennae one olfactory receptor or several different receptors for the detection of the single lilac aldehyde isomers, (2S,2′S,5′S)‐lilac aldehyde was diastereoselectively synthesized. (2S,2′S,5′S)‐Lilac aldehyde and its isomeric mixture were tested electrophysiologically on antennae of H. bicruris. The results displayed antennal responses, which are characteristic for a single receptor that detects the different lilac aldehyde isomers.  相似文献   

10.
The pollination biology of a population of 250 Yucca elata (Liliaceae) plants was studied in southern New Mexico. Yucca elata and the prodoxid yucca moth Tegeticula yuccasella have a mutualistic association that is essential for the successful sexual reproduction of both species. However, a wide range of other invertebrate species visit flowers during the day and at night. Our aim was to quantify the role of yucca moths and other invertebrate visitors in pollination and fruit set, using manipulative field experiments. Inflorescences were bagged during the day or night (N=12 inflorescences) to restrict flower visitors to either nocturnal or diurnal groups. Yucca moths were active exclusively nocturnally during the flowering period and thus did not visit inflorescences that were unbagged during the day. None of the 4022 flowers exposed only to diurnal visitors set fruit, whereas 4.6% of the 4974 flowers exposed only to nocturnal visitors (including yucca moths) produced mature fruit. The proportion of flowers producing fruit in the latter treatment was not significantly different from unbagged control inflorescences. In a series of experimental manipulations we also determined that: (1) flowers opened at dusk and were open for two days on average, but were only receptive to pollen on the first night of opening; (2) pollen must be pushed down the stigmatic tube to affect pollination; and (3) most plants require out-cross pollination to produce fruit. The combination of these results strongly suggests that yucca moths are the only species affecting pollination in Y. elata, and that if another species was to affect pollination, it would be a rare event.  相似文献   

11.
‘Beauty bush’ and ‘twin flower’ are common names attributed to two well‐recognizable species belonging to the genus Linnaea (16 spp.) – L. amabilis and L. borealis – long admired by botanists and gardeners for their perfumed paired bell‐shaped flowers. In the present study, we investigated their floral scent compositions through gas chromatography – mass spectrometry (GC‐MS) analysis of dynamic headspace samples. Because the flowers of L. borealis in wild populations are fragrant both during the day and in the evening, circadian variation of scent emission was also assessed for this species. In total, 26 chemical compounds comprise the floral scent bouquets of L. amabilis and L. borealis, identified as monoterpenes (14), benzenoids and phenylpropanoids (5), aliphatics (3), sesquiterpenes (3) and irregular terpenes (1). Whereas monoterpenes, notably (‐)‐α‐ and β‐pinene, dominated the scent of L. amabilis (over 82% relative abundance), benzene derivates: 1,4 dimethoxybenzene, anisaldehyde, 2‐phenylethanol, benzaldehyde and nicotinaldehyde were exclusive to analysed headspace samples of L. borealis, accounting for 52% to 100% of their relative compositions, in three Swedish populations. A southwestern Finnish population was characterized by the four first mentioned benzenoid compounds and large amounts of (‐)‐α‐ and β‐pinenes plus two aliphatic substances. The scent compounds identified for both species are ubiquitous and may serve as generalist attractants/stimulants for a broad assortment of anthophilous insects. The basic work on the flower scent of L. amabilis and L. borealis should inspire studies of their pollination biology, primarily the behaviour‐guiding roles of the characteristic emitted volatiles.  相似文献   

12.
The origins of obligate pollination mutualisms, such as the classic yucca–yucca moth association, appear to require extensive trait evolution and specialization. To understand the extent to which traits truly evolved as part of establishing the mutualistic relationship, rather than being pre‐adaptations, we used an expanded phylogenetic estimate with improved sampling of deeply‐diverged groups to perform the first formal reconstruction of trait evolution in pollinating yucca moths and their nonpollinating relatives. Our analysis demonstrates that key life‐history traits of yucca moths, including larval feeding in the floral ovary and the associated specialized cutting ovipositor, as well as colonization of woody monocots in xeric habitats, may have been established before the obligate mutualism with yuccas. Given these pre‐existing traits, novel traits in the mutualist moths are limited to the active pollination behaviours and the tentacular appendages that facilitate pollen collection and deposition. These results suggest that a highly specialized obligate mutualism was built on the foundation of pre‐existing interactions between early Prodoxidae and their host plants, and arose with minimal trait evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 847–855.  相似文献   

13.
  • Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci.
  • We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents.
  • The flowers of cambuci were self‐incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds.
  • This study describes the first scent‐mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
  相似文献   

14.
We studied the reproductive biology of three sympatric Araceae species, Anthurium sagittatum, A. thrinax and Spathiphyllum humboldtii in French Guiana. The plants flowered simultaneously and were visited by scent‐collecting male euglossine bees, which were apparently their major pollinators. In total, each species was visited by 3–7 euglossine species, and 2–3 euglossine species accounted for at least 80% of all flower visits, with visits being plant species‐specific. Floral scent consisted of 6–10 main compounds, which made up 76–94% of the total amount of volatiles and were specific in these high amounts to each plant species. We suggest that the different floral scents lead to clear separation of the main pollinating euglossine species, providing a directed and efficient intraspecific pollen flow that results in high reproductive success. Since the simple floral (inflorescence) morphology of the studied plants does not support any morphological mechanisms to exclude visitors, as for example in euglossine‐pollinated perfume orchids, floral scent might be of major importance for the reproductive isolation and sympatric occurrence of these plants.  相似文献   

15.
We examined the contribution of diurnal and nocturnal pollination to male and female reproductive success in Lilium auratum. Plants were bagged for either 12 h during the day or at night to allow either only nocturnal or only diurnal visitors to forage throughout the flowering period. We found that there was no significant difference in the seed:ovule ratio among diurnally pollinated, nocturnally pollinated, or control flowers. However, in terms of male reproductive success, it was more advantageous for the plants to be pollinated both diurnally and nocturnally: the numbers of pollen grains remaining in diurnally pollinated or nocturnally pollinated flowers were significantly greater than those in control flowers. The total amount of floral volatiles of L. auratum was significantly higher at night than during the day. The constituents of floral scent of all time series examined were mostly monoterpenoids, many of which serve as attractants for nocturnal hawkmoths. Such nocturnally biased floral scent emission of L. auratum might achieve male reproductive success by attracting nocturnal visitors, which may suggest that the relative contribution of floral scent in this species is biased towards male reproductive success.  相似文献   

16.
Generalized pollination systems may be favored in early spring flowering plants, as during this period pollinator activity is unpredictable. Many previous studies have concentrated on the importance of diurnal visitors in pollination, and consequently, information on the contribution of nocturnal visitors to pollination in early spring is limited. This study was conducted to evaluate the relative importance of diurnal and nocturnal pollinators in the early spring flowering dioecious shrub Stachyurus praecox (Stachyuraceae), in two temperate forests in central Japan. Visitors to the female and male flowers were observed during day and night, and their relative contributions to seed set were compared. The pollinator observations revealed that the diurnal and nocturnal insects visited both male and female flowers, and that the main flower visitors were diurnal small bees and flies as well as nocturnal settling moths. The diurnal and nocturnal flower visitors also acted as pollinators, as the pollen grains of S. praecox were attached to the insects collected from the female flowers. Pollination experiments demonstrated that the contributions of diurnal pollinators to the seed set were higher than those of the nocturnal pollinators. The results of this study indicate that S. praecox has a generalized pollination system, comprising both diurnal insects and nocturnal settling moths. Although the roles of diurnal insects are more important in the pollination of S. praecox, nocturnal settling moths may have a complementary role in early spring.  相似文献   

17.
Scent emission is important in nocturnal pollination systems, and plant species pollinated by nocturnal insects often present characteristic odor compositions and temporal patterns of emission. We investigated the temporal (day/night; flower lifetime) and spatial (different flower parts, nectar) pattern of flower scent emission in nocturnally pollinated Dianthusinoxianus, and determined which compounds elicit physiological responses on the antennae of the sphingid pollinator Hyles livornica.The scent of D.inoxianus comprises 68 volatile compounds, but is dominated by aliphatic 2-ketones and sesquiterpenoids, which altogether make up 82% of collected volatiles. Several major and minor compounds elicit electrophysiological responses in the antennae of H. livornica. Total odor emission does not vary along day and night hours, and neither does along the life of the flower. However, the proportion of compounds eliciting physiological responses varies between day and night. All flower parts as well as nectar release volatiles. The scent of isolated flower parts is dominated by fatty acid derivatives, whereas nectar is dominated by benzenoids. Dissection (= damage) of flowers induced a ca. 20-fold increase in the rate of emission of EAD-active volatiles, especially aliphatic 2-ketones.We suggest that aliphatic 2-ketones might contribute to pollinator attraction in D. inoxianus, even though they have been attributed an insect repellent function in other plant species. We also hypothesize that the benzenoids in nectar may act as an honest signal (‘nectar guide’) for pollinators.  相似文献   

18.
Not all visitors to flowers are pollinators and pollinating taxa can vary greatly in their effectiveness. Using a combination of observations and experiments we compared the effectiveness of introduced honeybees with that of hummingbirds, native bees and moths on both the male and female components of fitness of the Andean shrub Duranta mandonii (Verbenaceae). Our results demonstrated significant variation among flower visitors in rates of visitation, pollen removal ability and contribution to fruit set. This variation was not always correlated; that is, taxa that regularly visited flowers did not remove the most pollen or contribute to fruit set. Despite the taxonomic diversity of visitors, the main natural pollinators of this shrub are large native bees, such as Bombus spp. Introduced honeybees were found to be as effective as native bees at pollinating this species. Duranta mandonii has high apparent generalization, but low realized generalization and can be considered to be a moderate ecological generalist (a number of species of large bees provide pollination services), but a functional specialist (most pollinators belong to a single functional group). The present study has highlighted the importance of measuring efficiency components when documenting plant–pollinator interactions, and has also demonstrated that visitation rates may give little insight into the relative importance of flower visitors.  相似文献   

19.
Many species of Macaranga (Euphorbiacae) are fast‐growing pioneer trees with an important role in early succession in south‐east Asian rainforests. Within the genus, diverse types of ant–plant associations exist and it has therefore been a model system for studying mutualistic interactions. Little information existed up to now, however, on its reproductive biology. Our comparative study in the genus Macaranga in Sundaland revealed specific flower characteristics and uncommon brood‐site pollination systems: enclosed inflorescence morphologies with narrow entrances strongly restrict the set of flower visitors in many species. Thysanoptera were the most abundant insects in 20 of the 26 investigated Macaranga species and, in three species, heteropteran adults and larvae were dominant. Both insect groups used the flower chambers as breeding sites and fed on nectar‐producing trichomes inside the bracteoles. Thrips as well as heteropterans are assumed to contribute to pollination. Different Macaranga sections were associated with different flower visitors, suggesting isolation by different pollinators. Thrips pollination and myrmecophyty often occurred in the same sections. The development of enclosed flowers might have facilitated tight ant–plant interactions and prevent ant–pollinator conflicts. However, the complex ecosystems in which the mutualistic systems evolved are rapidly changed with unknown consequences for these specific interactions. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 935–953.  相似文献   

20.
Plant phenotypic plasticity in response to antagonists can affect other community members such as mutualists, conferring potential ecological costs associated with inducible plant defence. For flowering plants, induction of defences to deal with herbivores can lead to disruption of plant–pollinator interactions. Current knowledge on the full extent of herbivore‐induced changes in flower traits is limited, and we know little about specificity of induction of flower traits and specificity of effect on flower visitors. We exposed flowering Brassica nigra plants to six insect herbivore species and recorded changes in flower traits (flower abundance, morphology, colour, volatile emission, nectar quantity, and pollen quantity and size) and the behaviour of two pollinating insects. Our results show that herbivory can affect multiple flower traits and pollinator behaviour. Most plastic floral traits were flower morphology, colour, the composition of the volatile blend, and nectar production. Herbivore‐induced changes in flower traits resulted in positive, negative, or neutral effects on pollinator behaviour. Effects on flower traits and pollinator behaviour were herbivore species‐specific. Flowers show extensive plasticity in response to antagonist herbivores, with contrasting effects on mutualist pollinators. Antagonists can potentially act as agents of selection on flower traits and plant reproduction via plant‐mediated interactions with mutualists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号