With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y‐SNPs (UTY19 and ZFY10) and Y‐STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y‐chromosome haplotypes that represented three haplogroups. Y2‐104‐158 and Y2‐102‐158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3‐88‐156 predominates in southern China. Haplotypes Y2‐108‐158, Y2‐110‐158, Y2‐112‐158 and Y3‐92‐156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (H =0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes. 相似文献
Complete mitochondrial DNA D‐loop sequences of 1105 individuals were used to assess the diversity of maternal lineages of cattle populations in China. In total, 250 taurine and 88 zebu haplotypes were identified. Five main haplogroups—T1a, T2, T3, T4 and T5—were identified in Bos taurus, whereas Bos indicus harbored two haplogroups—I1 and I2. Our results suggest that the distribution of T1a in Asia was concentrated mainly in the northeast region (northeast China, Korea and Japan); haplogroups T2, T3 and T4 were predominant in Chinese cattle; and T5 was sporadically detected in Mongolian and Pingwu cattle. In contrast to the widespread presence of I1, I2 was distributed only in southwestern China (Yunnan‐Guizhou Plateau and the Tibet Autonomous Region) and Xinjiang Uygur Autonomous Region. This is the first time that all five taurine haplogroups and two zebu haplogroups have been found in Mongolian cattle. In addition, eight individuals in Tibetan cattle carried the Bos grunniens mtDNA type. The high mtDNA diversity (H =0.904 ± 0.008) and the weak genetic structure among the 57 Chinese cattle breeds/populations are consistent with their complex historical background, migration route and ecological environment. 相似文献
Domestication in the near eastern region had a major impact on the gene pool of humpless taurine cattle (Bos taurus). As a result of subsequent natural and artificial selection, hundreds of different breeds have evolved, displaying a broad range of phenotypic traits. Here, 10 Eurasian B. taurus breeds from different biogeographic and production conditions, which exhibit different demographic histories and have been under artificial selection at various intensities, were investigated using the Illumina BovineSNP50 panel to understand their genetic diversity and population structure. In addition, we scanned genomes from eight breeds for signatures of diversifying selection. Our population structure analysis indicated six distinct breed groups, the most divergent being the Yakutian cattle from Siberia. Selection signals were shared (experimental P‐value < 0.01) with more than four breeds on chromosomes 6, 7, 13, 16 and 22. The strongest selection signals in the Yakutian cattle were found on chromosomes 7 and 21, where a miRNA gene and genes related to immune system processes are respectively located. In general, genomic regions indicating selection overlapped with known QTL associated with milk production (e.g. on chromosome 19), reproduction (e.g. on chromosome 24) and meat quality (e.g. on chromosome 7). The selection map created in this study shows that native cattle breeds and their genetic resources represent unique material for future breeding. 相似文献
Enhancing climate resilience and sustainable production for animals in harsh environments are important goals for the livestock industry given the predicted impacts of climate change. Rapid adaptation to extreme climatic conditions has already been imposed on livestock species, including those exported after Columbus's arrival in the Americas. We compared the methylomes of two Creole cattle breeds living in tropical environments with their putative Spanish ancestors to understand the epigenetic mechanisms underlying rapid adaptation of a domestic species to a new and more physiologically challenging environment. Reduced representation bisulfite sequencing was used to assess differences in methylation in Creole and Spanish samples and revealed 334 differentially methylated regions using high stringency parameters (P‐value <0.01, ≥4 CpGs within a distance of 200 bp, mean methylation difference >25%) annotated to 263 unique features. Gene ontology analysis revealed candidate genes involved in tropical adaptation processes, including genes differentially hyper‐ or hypomethylated above 80% in Creole samples displaying biological functions related to immune response (IRF6, PTGDR, FAM19A5, PGLYRP1), nervous system (GBX2, NKX2‐8, RPGR), energy management (BTD), heat resistance (CYB561) and skin and coat attributes (LGR6). Our results entail that major environmental changes imposed on Creole cattle have had an impact on their methylomes measurable today, which affects genes implicated in important pathways for adaptation. Although further work is needed, this first characterization of methylation patterns driven by profound environmental change provides a valuable pointer for the identification of biomarkers of resilience for improved cattle performance and welfare under predicted climatic change models. 相似文献
Increased inbreeding is an inevitable consequence of selection in livestock populations. The analysis of high‐density single nucleotide polymorphisms (SNPs) facilitates the identification of long and uninterrupted runs of homozygosity (ROH) that can be used to identify chromosomal regions that are identical by descent. In this work, the distribution of ROH of different lengths in five Italian cattle breeds is described. A total of 4095 bulls from five cattle breeds (2093 Italian Holstein, 749 Italian Brown, 364 Piedmontese, 410 Marchigiana and 479 Italian Simmental) were genotyped at 54K SNP loci. ROH were identified and used to estimate molecular inbreeding coefficients (FROH), which were compared with inbreeding coefficients estimated from pedigree information (FPED) and using the genomic relationship matrix (FGRM). The average number of ROH per animal ranged from 54 ± 7.2 in Piedmontese to 94.6 ± 11.6 in Italian Brown. The highest number of short ROH (related to ancient consanguinity) was found in Piedmontese, followed by Simmental. The Italian Brown and Holstein had a higher proportion of longer ROH distributed across the whole genome, revealing recent inbreeding. The FPED were moderately correlated with FROH > 1 Mb (0.662, 0.700 and 0.669 in Italian Brown, Italian Holstein and Italian Simmental respectively) but poorly correlated with FGRM (0.134, 0.128 and 0.448 for Italian Brown, Italian Holstein and Italian Simmental respectively). The inclusion of ROH > 8 Mb in the inbreeding calculation improved the correlation of FROH with FPED and FGRM. ROH are a direct measure of autozygosity at the DNA level and can overcome approximations and errors resulting from incomplete pedigree data. In populations with high linkage disequilibrium (LD) and recent inbreeding (e.g. Italian Holstein and Italian Brown), a medium‐density marker panel, such as the one used here, may provide a good estimate of inbreeding. However, in populations with low LD and ancient inbreeding, marker density would have to be increased to identify short ROH that are identical by descent more precisely. 相似文献
The major bovine whey proteins, α‐lactalbumin (α‐LA) and β‐lactoglobulin (β‐LG), exhibit breed‐specific genetic variation. The aim of this study was to identify possible new protein variants and determine the distribution of variants across a variety of 18 taurine and indicine cattle breeds applying a DNA‐based sequencing approach. To this end, the open reading frames of the respective genes (LALBA and LGB) were sequenced in 476 animals. Within the LALBA gene, a previously unknown synonymous and a previously undesignated non‐synonymous nucleotide exchange were identified. Furthermore, two known α‐LA variants (A and B) and four known β‐LG variants (A, B, C and W) were determined. The occurrence of typical indicine variants in some taurine cattle breeds, such as Suisse Eringer, German Hinterwälder and Hungarian Grey Steppe, further supports the hypothesis of ancient Bos indicus introgression into (peri‐)alpine cattle breeds. 相似文献
The introduction of Iberian cattle in the Americas after Columbus’ arrival imposed high selection pressures on a limited number of animals over a brief period of time. Knowledge of the genomic regions selected during this process may help in enhancing climatic resilience and sustainable animal production. We first determined taurine and indicine contributions to the genomic structure of modern Creole cattle. Second, we inferred their demographic history using approximate Bayesian computation (ABC), linkage disequilibrium (LD) and Ne Slope (NeS) analysis. Third, we performed whole genome scans for selection signatures based on cross‐population extended haplotype homozygosity (XP‐EHH) and population differentiation (FST) to disentangle the genetic mechanisms involved in adaptation and phenotypic change by a rapid and major environmental transition. To tackle these questions, we combined SNP array data (~54,000 SNPs) in Creole breeds with their modern putative Iberian ancestors. Reconstruction of the population history of Creoles from the end of the 15th century indicated a major demographic expansion until the introduction of zebu and commercial breeds into the Americas ~180 years ago, coinciding with a drastic Ne contraction. NeS analysis provided insights into short‐term complexity in population change and depicted a decrease/expansion episode at the end of the ABC‐inferred expansion, as well as several additional fluctuations in Ne with the attainment of the current small Ne only towards the end of the 20th century. Selection signatures for tropical adaptation pinpointed the thermoregulatory slick hair coat region, identifying a new candidate gene (GDNF), as well as novel candidate regions involved in immune function, behavioural processes, iron metabolism and adaptation to new feeding conditions. The outcomes from this study will help in future‐proofing farm animal genetic resources (FAnGR) by providing molecular tools that allow selection for improved cattle performance, resilience and welfare under climate change. 相似文献
Domestic sheep (Ovis aries) can be divided into two groups with significantly different responses to hypoxic environments, determined by two allelic beta‐globin haplotypes. Haplotype A is very similar to the goat beta‐globin locus, whereas haplotype B has a deletion spanning four globin genes, including beta‐C globin, which encodes a globin with high oxygen affinity. We surveyed the beta‐globin locus using resequencing data from 70 domestic sheep from 42 worldwide breeds and three Ovis canadensis and two Ovis dalli individuals. Haplotype B has an allele frequency of 71.4% in O. aries and was homozygous (BB) in all five wild sheep. This shared ancestry indicates haplotype B is at least 2–3 million years old. Approximately 40 kb of the sequence flanking the ~37‐kb haplotype B deletion had unexpectedly low identity between haplotypes A and B. Phylogenetic analysis showed that the divergent region of sheep haplotype B is remarkably distinct from the beta‐globin loci in goat and cattle but still groups with the Ruminantia. We hypothesize that this divergent ~40‐kb region in haplotype B may be from an unknown ancestral ruminant and was maintained in the lineage to O. aries, but not other Bovidae, evolving independently of haplotype A. Alternatively, the ~40‐kb sequence in haplotype B was more recently acquired by an ancestor of sheep from an unknown non‐Bovidae ruminant, replacing part of haplotype A. Haplotype B has a lower nucleotide diversity than does haplotype A, suggesting a recent bottleneck, whereas the higher frequency of haplotype B suggests a subsequent spread through the global population of O. aries. 相似文献
The Korean Hanwoo cattle have been intensively selected for production traits, especially high intramuscular fat content. It is believed that ancient crossings between different breeds contributed to forming the Hanwoo, but little is known about the genomic differences and similarities between other cattle breeds and the Hanwoo. In this work, cattle breeds were grouped by origin into four types and used for comparisons: the Europeans (represented by six breeds), zebu (Nelore), African taurine (N'Dama) and Hanwoo. All animals had genotypes for around 680 000 SNPs after quality control of genotypes. Average heterozygosity was lower in Nelore and N'Dama (0.22 and 0.21 respectively) than in Europeans (0.26–0.31, with Shorthorn as outlier at 0.24) and Hanwoo (0.29). Pairwise FST analyses demonstrated that Hanwoo are more related to European cattle than to Nelore, with N'Dama in an intermediate position. This finding was corroborated by principal components and unsupervised hierarchical clustering. Using genome‐wide smoothed FST, 55 genomic regions potentially under positive selection in Hanwoo were identified. Among these, 29 were regions also detected in previous studies. Twenty‐four regions were exclusive to Hanwoo, and a number of other regions were shared with one or two of the other groups. These regions overlap a number of genes that are related to immune, reproduction and fatty acid metabolism pathways. Further analyses are needed to better characterize the ancestry of the Hanwoo cattle and to define the genes responsible to the identified selection peaks. 相似文献
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele. 相似文献
Variation in coat colour genotypes of archaeological cattle samples from Finland was studied by sequencing 69 base pairs of the extension locus (melanocortin 1‐receptor, MC1R) targeting both a transition and a deletion defining the three main alleles, such as dominant black (ED), wild type (E+) and recessive red (e). The 69‐bp MC1R sequence was successfully analysed from 23 ancient (1000–1800 AD) samples. All three main alleles and genotype combinations were detected with allele frequencies of 0.26, 0.17 and 0.57 for ED, E+ and e respectively. Recessive red and dominant black alleles were detected in both sexes. According to the best of our knowledge, this is the first ancient DNA study defining all three main MC1R alleles. Observed MC1R alleles are in agreement with calculated phenotype frequencies from historical sources. The division of ancient Finnish cattle population into modern Finnish breeds with settled colours was dated to the 20th century. From the existing genotyped populations in Europe (43 breeds, n =2360), the closest match to ancient MC1R genotype frequencies was with the Norwegian native multicoloured breeds. In combined published genotype data of ancient (n =147) and genotypes and phenotypes of modern Nordic cattle (n =738), MC1R allele frequencies showed temporal changes similar to neutral mitochondrial DNA and Y‐chromosomal haplotypes analysed earlier. All three markers indicate major change in genotypes in Nordic cattle from the Late Iron Age to the Medieval period followed by slower change through the historical periods until the present. 相似文献
Y‐chromosome‐specific haplotypes (Y‐haplotypes) constructed using single nucleotide polymorphisms (Y‐SNPs) in the MSY (male‐specific region of the Y‐chromosome) are valuable in population genetic studies. But sequence variants in the yak MSY region have been poorly characterized so far. In this study, we screened a total of 16 Y‐chromosome‐specific gene segments from the ZFY, SRY, UTY, USP9Y, AMELY and OFD1Y genes to identify Y‐SNPs in domestic yaks. Six novel Y‐SNPs distributed in the USP9Y (g.223C>T), UTY19 (g.158A>C and g.169C>T), AMELY2 (g.261C>T), OFD1Y9 (g.165A>G) and SRY4 (g.104G>A) loci, which can define three Y‐haplotypes (YH1, YH2 and YH3) in yaks, were discovered. YH1 was the dominant and presumably most ancient haplotype based on the comparison of UTY19 locus with other bovid species. Interestingly, we found informative UTY19 markers (g.158A>C and g.169C>T) that can effectively distinguish the three yak Y‐haplotypes. The nucleotide diversity was 1.7 × 10?4 ± 0.3 × 10?4, indicating rich Y‐chromosome diversity in yaks. We identified two highly divergent lineages (YH1 and YH2 vs. YH3) that share similar frequencies (YH1 + YH2: 0.82–0.89, YH3: 0.11–0.18) among all three populations. In agreement with previous mtDNA studies, we supported the hypothesis that the two highly divergent lineages (YH1 and YH2 vs. YH3) derived from a single gene pool, which can be explained by the reunion of at least two paternal populations with the divergent lineages already accumulated before domestication. We estimated a divergence time of 408 110 years between the two divergent lineages, which is consistent with the data from mitochondrial DNA in yaks. 相似文献
Cattle have been invaluable for the transition of human society from nomadic hunter‐gatherers to sedentary farming communities throughout much of Europe, Asia and Africa since the earliest domestication of cattle more than 10,000 years ago. Although current understanding of relationships among ancestral populations remains limited, domestication of cattle is thought to have occurred on two or three occasions, giving rise to the taurine (Bos taurus) and indicine (Bos indicus) species that share the aurochs (Bos primigenius) as common ancestor ~250,000 years ago. Indicine and taurine cattle were domesticated in the Indus Valley and Fertile Crescent, respectively; however, an additional domestication event for taurine in the Western Desert of Egypt has also been proposed. We analysed medium density Illumina Bovine SNP array (~54,000 loci) data across 3,196 individuals, representing 180 taurine and indicine populations to investigate population structure within and between populations, and domestication and demographic dynamics using approximate Bayesian computation (ABC). Comparative analyses between scenarios modelling two and three domestication events consistently favour a model with only two episodes and suggest that the additional genetic variation component usually detected in African taurine cattle may be explained by hybridization with local aurochs in Africa after the domestication of taurine cattle in the Fertile Crescent. African indicine cattle exhibit high levels of shared genetic variation with Asian indicine cattle due to their recent divergence and with African taurine cattle through relatively recent gene flow. Scenarios with unidirectional or bidirectional migratory events between European taurine and Asian indicine cattle are also plausible, although further studies are needed to disentangle the complex human‐mediated dispersion patterns of domestic cattle. This study therefore helps to clarify the effect of past demographic history on the genetic variation of modern cattle, providing a basis for further analyses exploring alternative migratory routes for early domestic populations. 相似文献
Native domestic breeds represent important cultural heritage and genetic diversity relevant for production traits, environmental adaptation and food security. However, risks associated with low effective population size, such as inbreeding and genetic drift, have elevated concerns over whether unique within‐breed lineages should be kept separate or managed as one population. As a conservation genomic case study of the genetic diversity represented by native breeds, we examined native and commercial cattle (Bos taurus) breeds including the threatened Danish Jutland cattle. We examined population structure and genetic diversity within breeds and lineages genotyped across 770K single nucleotide polymorphism loci to determine (a) the amount and distribution of genetic diversity in native breeds, and (b) the role of genetic drift versus selection. We further investigated the presence of outlier loci to detect (c) signatures of environmental selection in native versus commercial breeds, and (d) native breed adaptation to various landscapes. Moreover, we included older cryopreserved samples to determine (e) whether cryopreservation allows (re)introduction of original genetic diversity. We investigated a final set of 195 individuals and 677K autosomal loci for genetic diversity within and among breeds, examined population structure with principal component analyses and a maximum‐likelihood approach and searched for outlier loci suggesting artificial or natural selection. Our findings demonstrate the potential of genomics for identifying the uniqueness of native domestic breeds, and for maintaining their genetic diversity and long‐term evolutionary potential through conservation plans balancing inbreeding with carefully designed outcrossing. One promising opportunity is the use of cryopreserved samples, which can provide important genetic diversity for populations with few individuals, while helping to preserve their traditional genetic characteristics. Outlier tests for native versus commercial breeds identified genes associated with climate adaptation, immunity and metabolism, and native breeds may carry genetic variation important for animal health and robustness in a changing climate. 相似文献
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype. 相似文献
The objective of this study was to validate the association of significant SNPs identified from a previous genome‐wide association study with carcass weight (CWT) in a commercial Hanwoo population. We genotyped 13 SNPs located on BTA14 in 867 steers from Korea Hanwoo feedlot bulls. Of these 13 SNPs, five SNPs, namely rs29021868, rs110061498, rs109546980, rs42404006 and rs42303720, were found to be significantly associated (P <0.001) with CWT. These five significant markers spanned the 24.3 to 29.4 Mb region of BTA14. The most significant marker (rs29021868) for CWT in this study had a 13.07 kg allele substitution effect and accounted for 2.4% of the additive genetic variance in the commercial Hanwoo population. The SNP marker rs109546980 was found to be significantly associated with both CWT (P <0.001) and eye muscle area (P <0.001) and could potentially be exploited for marker‐assisted selection in Hanwoo cattle. We also genotyped the ss319607402 variation, which maps to intron2 of PLAG1 gene and which is already reported to be associated with height, to identify any significant association with carcass weight; however, no such association was observed in this Hanwoo commercial population. 相似文献
Genomic selection is becoming a standard tool in livestock breeding programs, particularly for traits that are hard to measure. Accuracy of genomic selection can be improved by increasing the quantity and quality of data and potentially by improving analytical methods. Adding genotypes and phenotypes from additional breeds or crosses often improves the accuracy of genomic predictions but requires specific methodology. A model was developed to incorporate breed composition estimated from genotypes into genomic selection models. This method was applied to age at puberty data in female beef cattle (as estimated from age at first observation of a corpus luteum) from a mix of Brahman and Tropical Composite beef cattle. In this dataset, the new model incorporating breed composition did not increase the accuracy of genomic selection. However, the breeding values exhibited slightly less bias (as assessed by deviation of regression of phenotype on genomic breeding values from the expected value of 1). Adding additional Brahman animals to the Tropical Composite analysis increased the accuracy of genomic predictions and did not affect the accuracy of the Brahman predictions. 相似文献
Drosophila larvae innately show light avoidance behavior. Compared with robust blue‐light avoidance, larvae exhibit relatively weaker green‐light responses. In our previous screening for genes involved in larval light avoidance, compared with control w1118 larvae, larvae with γ‐glutamyl transpeptidase 1 (Ggt‐1) knockdown or Ggt‐1 mutation were found to exhibit higher percentage of green‐light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt‐1 in different tissues, we found that Ggt‐1 in malpighian tubules was both necessary and sufficient for green‐light avoidance. Our results showed that glutamate levels were lower in Ggt‐1 null mutants compared with controls. Feeding Ggt‐1 null mutants glutamate can normalize green‐light avoidance, indicating that high glutamate concentrations suppressed larval green‐light avoidance. However, rather than directly, glutamate affected green‐light avoidance indirectly through GABA, the level of which was also lower in Ggt‐1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green‐light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green‐light avoidance, which was inhibited in wild‐type larvae.
The X‐ray structure of an immunoglobulin light‐chain dimer isolated from the urine as a `Bence‐Jones protein' from a patient with multiple myeloma and amyloidosis (Sea) was determined at 1.94 Å resolution and refined to R and Rfree factors of 0.22 and 0.25, respectively. This `amyloidogenic' protein crystallized in the orthorhombic P212121 space group with unit‐cell parameters a = 48.28, b = 83.32, c = 112.59 Å as determined at 100 K. In the vital organs (heart and kidneys), the equivalent of the urinary protein produced fibrillar amyloid deposits which were fatal to the patient. Compared with the amyloidogenic Mcg light‐chain dimer, the Sea protein was highly soluble in aqueous solutions and only crystallized at concentrations approaching 100 mg ml−1. Both the Sea and Mcg proteins packed into crystals in highly ordered arrangements typical of strongly diffracting crystals of immunoglobulin fragments. Overall similarities and significant differences in the three‐dimensional structures and crystalline properties are discussed for the Sea and Mcg Bence‐Jones proteins, which together provide a generalized model of abnormalities present in λ chains, facilitating a better understanding of amyloidosis of light‐chain origin (AL). 相似文献