共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kenneth J. Feeley 《Global Change Biology》2012,18(4):1335-1341
Species are predicted to respond to global warming through ‘cold‐ward’ shifts in their geographic distributions due to encroachment into newly suitable habitats and/or dieback in areas that become climatically unsuitable. I conduct one of the first‐ever tests of this hypothesis for tropical plant species. I test for changes in the thermal distributions of 239 South American tropical plant species using dated herbarium records for specimens collected between 1970 and 2009. Supporting a priori predictions, many species (59%) exhibit some evidence of significant cold‐ward range shifts even after correcting for collection biases. Over 1/3 of species (35%) show significant cold‐ward movement in their hot thermal limits (mean rate of change = 0.022 °C yr?1). Most of these species (85%; 30% of all study species) show no corresponding shift in their cold thermal limits. These unbalanced changes in the species’ thermal range limits may indicate species that are experiencing dieback due to their intolerance of rising temperatures coupled with an inability to expand into newly climatically suitable habitats. On the other hand, 25% of species show significant cold‐ward shifts in their cold thermal range limits (mean rate of change = 0.003 °C yr?1), but 80% of these species (20% of all study species) show no corresponding shift in their hot thermal range limits. In these cases, the unbalanced shifts may indicate species that are able to ‘benefit’ under global warming, at least temporally, by both tolerating rising temperatures and expanding into new suitable habitat. An important ancillary result of this study is that the number of species exhibiting significant range shifts was greatly influenced by shifting collector biases. This highlights the need to account for biases when analyzing natural history records or other long‐term records. 相似文献
3.
Drew W. Purves 《Proceedings. Biological sciences / The Royal Society》2009,276(1661):1477-1484
Regional species–climate correlations are well documented, but little is known about the ecological processes responsible for generating these patterns. Using the data from over 690 000 individual trees I estimated five demographic rates—canopy growth, understorey growth, canopy lifespan, understorey lifespan and per capita reproduction—for 19 common eastern US tree species, within the core and the northern and southern boundaries, of the species range. Most species showed statistically significant boundary versus core differences in most rates at both boundary types. Differences in canopy and understorey growth were relatively small in magnitude but consistent among species, being lower at the northern (average −17%) and higher at the southern (average +12%) boundaries. Differences in lifespan were larger in magnitude but highly variable among species, except for a marked trend for reduced canopy lifespan at the northern boundary (average −49%). Differences in per capita reproduction were large and statistically significant for some species, but highly variable among species. The rate estimates were combined to calculate two performance indices: R0 (a measure of lifetime fitness in the absence of competition) was consistently lower at the northern boundary (average −86%) whereas Z* (a measure of competitive ability in closed forest) showed no sign of a consistent boundary–core difference at either boundary. 相似文献
4.
Andreas Hamann David R. Roberts Quinn E. Barber Carlos Carroll Scott E. Nielsen 《Global Change Biology》2015,21(2):997-1004
The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul‐de‐sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present‐to‐future velocities) and management of species populations (future‐to‐present velocities). 相似文献
5.
Conserving biodiversity in the face of climate change requires a predictive ecology of species distributions. Nowhere is this need more acute than in the tropics, which harbor the majority of Earth's species and face rapid and large climate and land‐use changes. However, the study of species distributions and their responses to climate change in high diversity tropical regions is potentially crippled by a lack of basic data. We analyzed a database representing more than 800 000 unique geo‐referenced natural history collections to determine what fraction of tropical plant species has sufficient numbers of available collections for use in the habitat or niche models commonly used to predict species responses to climate change. We found that more than nine out of 10 species from the three principle tropical realms are so poorly collected (n < 20 records) that they are essentially invisible to modern modeling and conservation tools. In order to predict the impact of climate change on tropical species, efforts must be made to increase the amount of data available from tropical countries through a combination of collecting new specimens and digitizing existing records. 相似文献
6.
Niche conservatism has been proposed as the mechanism driving speciation in temperate montane clades through range fragmentation during climatic oscillations. Thus, a negative relationship between speciation rates and niche width is expected. Here, we test this prediction using American zopherine beetles. Our phylogenetic analyses recovered two clades in addition to that of the genus Zopherus: the genera Verodes and Phloeodes, which originated most likely in the Eocene, and diversified during the Miocene and the Pliocene. The assessment of clade niche width in relation to clade diversity supported the proposition of narrow niches leading to a higher probability of range fragmentation during climatic oscillations, thus increasing speciation. Additionally, almost all current populations of Phloeodes and Verodes are located within regions that retained favourable climatic conditions across warm and cold Pleistocene periods, suggesting that dispersal limitation is a strong factor controlling clade distribution. In sum, our results suggest that (i) niche width is a major determinant of the probability of speciation in temperate montane clades, by controlling the probability of potential range fragmentation and (ii) dispersal limitation is also a major determinant of the speciation process, by increasing the fragmentation of realized ranges even when potential distributions are cyclically fused during climatic oscillations. When dispersal limitation is extreme, as in zopherine beetles, populations persist just in those areas that have retained suitable conditions during extremes of past climatic oscillations. Paradoxically, this relict condition confers zopherine beetles great resilience for facing future climate change. 相似文献
7.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration. 相似文献
8.
9.
Andean plant species are predicted to shift their distributions, or ‘migrate,’ upslope in response to future warming. The impacts of these shifts on species' population sizes and their abilities to persist in the face of climate change will depend on many factors including the distribution of individuals within species' ranges, the ability of species to migrate and remain at equilibrium with climate, and patterns of human land‐use. Human land‐use may be especially important in the Andes where anthropogenic activities above tree line may create a hard barrier to upward migrations, imperiling high‐elevation Andean biodiversity. In order to better understand how climate change may impact the Andean biodiversity hotspot, we predict the distributional responses of hundreds of plant species to changes in temperature incorporating population density distributions, migration rates, and patterns of human land‐use. We show that plant species from high Andean forests may increase their population sizes if able to migrate onto the expansive land areas above current tree line. However, if the pace of climate change exceeds species' abilities to migrate, all species will experience large population losses and consequently may face high risk of extinction. Using intermediate migration rates consistent with those observed for the region, most species are still predicted to experience population declines. Under a business‐as‐usual land‐use scenario, we find that all species will experience large population losses regardless of migration rate. The effect of human land‐use is most pronounced for high‐elevation species that switch from predicted increases in population sizes to predicted decreases. The overriding influence of land‐use on the predicted responses of Andean species to climate change can be viewed as encouraging since there is still time to initiate conservation programs that limit disturbances and/or facilitate the upward migration and persistence of Andean plant species. 相似文献
10.
Aim
Temperate tree species overwhelmingly responded to past climate change by migrating rather than adapting. However, past climate change did not have the modern human‐driven patterns of land use and fragmentation, raising questions of whether tree migration will still be able to keep pace with climate. Previous studies using coarse‐grained or randomized landscapes suggest that dispersal may be delayed but have not identified outright barriers to migration. Here, we use real‐world fragmented landscapes at the scale of forest stands to assess the migration capacity of eastern tree species.Location
Eastern U.S.A.Time period
Present day to 2100.Major taxa studied
Eastern U.S. trees.Methods
We simulated dispersal over 100 years for 15 species common to the mid‐Atlantic region and that are predicted to gain suitable habitat in the northeast. In contrast to previous studies, we incorporated greater realism with species‐specific life histories and real‐world spatial configurations of anthropogenic land use. We used simulation results to calculate dispersal rates for each species and related these to predicted rates of species habitat shift.Results
Our simulations suggest that land use in the human‐dominated east‐coast corridor slows species dispersal rates by 12–40% and may prevent keeping pace with climate. Species most impacted by anthropogenic land use were often those with the highest predicted species habitat shifts. We identified two major dispersal barriers, the Washington DC metropolitan area and central NY, that severely impeded tree migration.Main conclusions
Patterns of anthropogenic land use not only slowed migration but also resulted in effective barriers to dispersal. These impacts were exacerbated by tree life histories, such as long ages to maturity and narrow dispersal kernels. Without intervention, the migration lags predicted here may lead to loss in biodiversity and ecosystem functions as current forest species decline, and may contribute to formation of novel communities. 相似文献11.
In metacommunities, diversity is the product of species interactions at the local scale and dispersal between habitat patches at the regional scale. Although warming can alter both species interactions and dispersal, the combined effects of warming on these two processes remains uncertain. To determine the independent and interactive effects of warming‐induced changes to local species interactions and dispersal, we constructed experimental metacommunities consisting of enclosed milkweed patches seeded with five herbivorous milkweed specialist insect species. We treated metacommunities with two levels of warming (unwarmed and warmed) and three levels of connectivity (isolated, low connectivity, high connectivity). Based on metabolic theory, we predicted that if plant resources were limited, warming would accelerate resource drawdown, causing local insect declines and increasing both insect dispersal and the importance of connectivity to neighboring patches for insect persistence. Conversely, given abundant resources, warming could have positive local effects on insects, and the risk of traversing a corridor to reach a neighboring patch could outweigh the benefits of additional resources. We found support for the latter scenario. Neither resource drawdown nor the weak insect‐insect associations in our system were affected by warming, and most insect species did better locally in warmed conditions and had dispersal responses that were unchanged or indirectly affected by warming. Dispersal across the matrix posed a species‐specific risk that led to declines in two species in connected metacommunities. Combined, this scaled up to cause an interactive effect of warming and connectivity on diversity, with unwarmed metacommunities with low connectivity incurring the most rapid declines in diversity. Overall, this study demonstrates the importance of integrating the complex outcomes of species interactions and spatial structure in understanding community response to climate change. 相似文献
12.
13.
Kenneth J. Feeley Johanna Hurtado Sassan Saatchi Miles R. Silman David B. Clark 《Global Change Biology》2013,19(11):3472-3480
Species are predicted to shift their distributions upslope or poleward in response to global warming. This prediction is supported by a growing number of studies documenting species migrations in temperate systems but remains poorly tested for tropical species, and especially for tropical plant species. We analyzed changes in tree species composition in a network of 10 annually censused 1‐ha plots spanning an altitudinal gradient of 70–2800 m elevation in Costa Rica. Specifically, we combined plot data with herbarium records (accessed through GBIF) to test if the plots' community temperature scores (CTS, average thermal mean of constituent species weighted by basal area) have increased over the past decade as is predicted by climate‐driven species migrations. In addition, we quantified the contributions of stem growth, recruitment, and mortality to the observed patterns. Supporting our a priori hypothesis of upward species migrations, we found that there have been consistent directional shifts in the composition of the plots, such that the relative abundance of lowland species, and hence CTS, increased in 90% of plots. The rate of the observed compositional shifts corresponds to a mean thermal migration rate (TMR) of 0.0065 °C yr?1 (95% CI = 0.0005–0.0132 °C yr?1). While the overall TMR is slower than predicted based on concurrent regional warming of 0.0167 °C yr?1, migrations were on pace with warming in 4 of the 10 plots. The observed shifts in composition were driven primarily by mortality events (i.e., the disproportionate death of highland vs. lowland species), suggesting that individuals of many tropical tree species will not be able to tolerate future warming and thus their persistence in the face of climate change will depend on successful migrations. Unfortunately, in Costa Rica and elsewhere, land area inevitably decreases at higher elevations; hence, even species that are able to migrate successfully will face heightened risks of extinction. 相似文献
14.
Martin Luquet Maurice Hulle Jean-Christophe Simon Nicolas Parisey Christelle Buchard Bruno Jaloux 《Insect Science》2019,26(5):881-896
Abstract Insect populations are prone to respond to global changes through shifts in phenology, distribution and abundance. However, global changes cover several factors such as climate and land-use, the relative importance of these being largely unknown. Here, we aim at disentangling the effects of climate, land-use, and geographical drivers on aphid abundance and phenology in France, at a regional scale and over the last 40 years. We used aerial data obtained from suction traps between 1978 and 2015 on five aphid species varying in their degree of specialization to legumes, along with climate, legume crop area and geographical data. Effects of environmental and geographical variables on aphid annual abundance and spring migration dates were analyzed using generalized linear mixed models. We found that within the last four decades, aphids have advanced their spring migration by a month, mostly due to the increase in temperature early in the year, and their abundance decreased by half on average, presumably in response to a combination of factors. The influence of legume crop area decreased with the degree of specialization of the aphid species to such crops. The effect of geographical variation was high even when controlling for environmental variables, suggesting that many other spatially structured processes act on aphid population characteristics. Multifactorial analyses helped to partition the effects of different global change drivers. Climate and land-use changes have strong effects on aphid populations, with important implications for future agriculture. Additionally, trait-based response variation could have major consequences at the community scale. 相似文献
15.
Florian T. Wetzel Helmut Beissmann Dustin J. Penn Walter Jetz 《Global Change Biology》2013,19(7):2058-2070
Sea‐level rise (SLR) from global warming may have severe consequences for biodiversity; however, a baseline, broad‐scale assessment of the potential consequences of SLR for island biodiversity is lacking. Here, we quantify area loss for over 12 900 islands and over 3000 terrestrial vertebrates in the Pacific and Southeast Asia under three different SLR scenarios (1 m, 3 m and 6 m). We used very fine‐grained elevation information, which offered >100 times greater spatial detail than previous analyses and allowed us to evaluate thousands of hitherto not assessed small islands. Depending on the SLR scenario, we estimate that 15–62% of islands in our study region will be completely inundated and 19–24% will lose 50–99% of their area. Overall, we project that between 1% and 9% of the total island area in our study region may be lost. We find that Pacific species are 2–3 times more vulnerable than those in the Indomalayan or Australasian region and risk losing 4–22% of range area (1–6 m SLR). Species already listed as threatened by IUCN are particularly vulnerable compared with non‐threatened species. Under a simple area loss–species loss proportionality assumption, we estimate that 37 island group endemic species in this region risk complete inundation of their current global distribution in the 1 m SLR scenario that is widely anticipated for this century (and 118 species under 3 m SLR). Our analysis provides a first, broad‐scale estimate of the potential consequences of SLR for island biodiversity and our findings confirm that islands are extremely vulnerable to sea‐level rise even within this century. 相似文献
16.
Fabien Leprieur Patrice Descombes Michel Kulbicki David Mouillot Valeriano Parravicini Loïc Pellissier 《Ecology and evolution》2017,7(6):1996-2005
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change. 相似文献
17.
Heather L. Hulton VanTassel Michael D. Bell John Rotenberry Robert Johnson Michael F. Allen 《Ecology and evolution》2017,7(23):10326-10338
Many species have already experienced distributional shifts due to changing environmental conditions, and analyzing past shifts can help us to understand the influence of environmental stressors on a species as well as to analyze the effectiveness of conservation strategies. We aimed to (1) quantify regional habitat associations of the California gnatcatcher (Polioptila californica ); (2) describe changes in environmental variables and gnatcatcher distributions through time; (3) identify environmental drivers associated with habitat suitability changes; and (4) relate habitat suitability changes through time to habitat conservation plans. Southern California's Western Riverside County (WRC ), an approximately 4,675 km2 conservation planning area. We assessed environmental correlates of distributional shifts of the federally threatened California gnatcatcher (hereafter, gnatcatcher) using partitioned Mahalanobis D 2 niche modeling for three time periods: 1980–1997, 1998–2003, and 2004–2012, corresponding to distinct periods in habitat conservation planning. Highly suitable gnatcatcher habitat was consistently warmer and drier and occurred at a lower elevation than less suitable habitat and consistently had more CSS , less agriculture, and less chaparral. However, its relationship to development changed among periods, mainly due to the rapid change in this variable. Likewise, other aspects of highly suitable habitat changed among time periods, which became cooler and higher in elevation. The gnatcatcher lost 11.7% and 40.6% of highly suitable habitat within WRC between 1980–1997 to 1998–2003, and 1998–2003 to 2004–2012, respectively. Unprotected landscapes lost relatively more suitable habitat (?64.3%) than protected landscapes (30.5%). Over the past four decades, suitable habitat loss within WRC , especially between the second and third time periods, was associated with temperature‐related factors coupled with landscape development across coastal sage scrub habitat; however, development appears to be driving change more rapidly than climate change. Our study demonstrates the importance of providing protected lands for potential suitable habitat in future scenarios. 相似文献
18.
Animal populations have undergone substantial declines in recent decades. These declines have occurred alongside rapid, human‐driven environmental change, including climate warming. An association between population declines and environmental change is well established, yet there has been relatively little analysis of the importance of the rates of climate warming and its interaction with conversion to anthropogenic land use in causing population declines. Here we present a global assessment of the impact of rapid climate warming and anthropogenic land use conversion on 987 populations of 481 species of terrestrial birds and mammals since 1950. We collated spatially referenced population trends of at least 5 years’ duration from the Living Planet database and used mixed effects models to assess the association of these trends with observed rates of climate warming, rates of conversion to anthropogenic land use, body mass, and protected area coverage. We found that declines in population abundance for both birds and mammals are greater in areas where mean temperature has increased more rapidly, and that this effect is more pronounced for birds. However, we do not find a strong effect of conversion to anthropogenic land use, body mass, or protected area coverage. Our results identify a link between rapid warming and population declines, thus supporting the notion that rapid climate warming is a global threat to biodiversity. 相似文献
19.
Kirsten S. W. O'Sullivan Paloma Ruiz‐Benito Jan‐Chang Chen Alistair S. Jump 《Ecography》2021,44(1):112-123
Ongoing global climate change is driving widespread shifts in species distributions. Trends show frequent upwards shifts of treelines, but information on changes in montane forest below the treeline and in the tropics and subtropics is limited, despite the importance of these areas for biodiversity and ecosystem function. Patterns of species shifts in tropical and subtropical regions are likely to be more complex and individualistic than global averages suggest due to high species diversity and strong influence of competition, alongside direct climatic limitations on distributions. To address the question of how subtropical montane tree species are likely to move as climate changes, we used an extensive national forest inventory to estimate distribution shifts of 75 tree species in Taiwan by comparing the optimum elevation and range edges of adults and juveniles within species. Overall there was a significant difference in optimum elevation of adults and juveniles. Life stage mismatches suggested upward shifts in 35% of species but downward shifts of over half (56%), while 8% appeared stable. Upward elevation shifts were disproportionately common in high elevation species, whilst mid to low elevation species suggested greater variation in shift direction. Whilst previous research on mountain forest range shifts has been dominated by work addressing changes in treeline position, we show that although high elevation species shift up, below the treeline species may shift individualistically, heralding widespread changes in forest communities over coming decades. The wide variation of responses indicated is likely driven by individual species responses to interacting environmental factors such as competition, topography and anthropogenic influences across the broad range of forest types investigated. As global environmental changes continue, more detailed understanding of tree range shifts across a wide spectrum of forests will allow us to prepare for the implications of such changes for biodiversity, ecosystem function and dependent human populations. 相似文献
20.