首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Na+ transport in the red cells of the dog is dependent on cell volume, a 20% change in cell volume leading to a 25-fold increase in apparent Na+ flux; the effect is dependent upon metabolic energy. We have found that swelling and shrinking dog red cells causes a shift in the 31P-NMR peak of 2,3-diphosphoglycerate, which is present in dog red cells at 5.5 mM. Control experiments indicate that the 2,3-diphosphoglycerate resonance peak shifts may not be attributed to: interaction with hemoglobin, changes in cell pH, ionic strength, diamagnetic susceptibility or small changes in the Mg2+/2,3-diphosphoglycerate ratio. Experiments with chlorpromazine and pentanol which alter red cell membrane area by a mechanism different from osmotic swelling suggest that 2,3-diphosphoglycerate interacts with a binding site in the cell that is dependent upon the physical condition of the dog red cell membrane.  相似文献   

2.
Summary Amino reactive TNBS (2,4,6-trinitrobenzene sulfonic acid), SITS (4-acetamido-4-isothiocyano-stilbene-2-2-disulfonic acid), and Zn++, and SH reactive Hg++ were employed to study sodium channels in dog red blood cells. Simultaneous modification of the membrane with both a SH and an amino modifier results in an increase in Na+ permeability which is equal to the sum of their individual effects. This indicates that SH and amino sites are separate units. Three lines of evidence indicate that the amino sites are more superficial than the SH sites. (1) Pretreatment with an amino modifier decreases the effectiveness of subsequent SH modification. (2) SITS, a nonpenetrating amino reagent, enhances Na+ permeability while DTNB, a nonpenetrating SH modifier, is ineffective. (3) Pretreatment of amino sites decreases the apparent affinity of Hg++ for SH sites. In addition, three lines of evidence indicate that TNBS and Zn++ modify different amino sites. First, simultaneous modification with TNBS and Zn++ results in an increase in Na+ permeability equal to the sum of their individual effects. Secondly, Zn++ causes an increase in Na+ permeability in cells previously treated with TNBS. Finally, the pH dependence of Zn++ modification is opposite that for TNBS modification. These pH experiments suggest that Zn++ enhances Na+ permeability by reacting with unprotonated amino sites while TNBS modifies protonated amino sites. It is concluded that the sodium permeability of dog red blood cells is normally limited by superficial amino sites and deeper sulfhydryl sites in the sodium channels.  相似文献   

3.
Abstract. Slightly vacuolated cells, i.e. microalgae and meristematic cells of vascular plants, maintain low Cl? and Na+ concentrations even when exposed to a highly saline environment. The factors regulating the internal ion concentration are the relative rate of volume expansion, the membrane permeability to ions, the electrical potential, and the active ion fluxes. For ion species which are not actively transported, a formula is developed which relates the internal concentration to the rate of expansion of cell volume, the permeability of membranes to that ion, and the electrical potential. For example, when the external concentration of Cl? is high, and Cl? influx is probably mainly passive, the formula predicts that rapid growth keeps the internal Cl? concentration lower than that in a non-growing cell with the same electrical potential; this effect is substantial if the plasmalemma has a low permeability to Cl?. For ion species which are actively transported, the rate of pumping must be considered. For instance Na+ concentrations are kept low mainly by an efficient Na+ extrusion pump which works against the electric field across the membrane. The requirement for Na+ extrusion is related to the external Na+ concentration, the rate of expansion of cell volume, the membrane permeability, and the electrical potential. It is possible that microalgae have a more positive electrical potential than many other plant cells; if so, requirements for high rates of active Na+ extrusion will be lower. The required rates of Na+ extrusion are lower during rapid growth, provided that the permeability of the plasmalemma to Na+ is low. The energy required for the regulation of Cl? and Na+ concentrations is low, especially in rapidly expanding cells where Na+ extrusion requires only 1–2% of the energy normally produced in respiration. The exclusion of these ions, however, must be accompanied by the synthesis of enough organic compounds to provide adequate osmotic solutes for the increases in volume accompanying growth. This process reduces the substrates available for respiration and synthesis of cell constituents, but the reduction is not prohibitively large—even for cells growing in 750 mol m?3 NaCl, the carbohydrate accumulated as osmotic solute is only 10% of that consumed in respiration.  相似文献   

4.
The effect of extracellular inorganic phosphate on Na+ movements in dog red blood cells has been studied. As the phosphate concentration is increased from 0 to 30 mM, Na+ efflux increases by 2- to 3-fold and Na+ influx increases approximately 2-fold. This enhancement of Na+ fluxes by phosphate can be prevented by the addition of iodoacetate (1 mM), an inhibitor of glycolysis, or 4-acetamido-4′-iso-thiocyantostilbene-2,2′-disulfonic acid (0.01 mM), which blocks anion transport, to the medium. The increases in Na+ movements are not caused by changes in cell volumes. These results suggest that phosphate must enter the cell to enhance Na+ fluxes and that the mechanism of action may be via a stimulatory effect on glycolysis.  相似文献   

5.
Adrenergic stimulation of trout red blood cells activates a Na+/H+-exchange. If unopposed, the ensuing increase in cell Na+ leads to an isosmotic cell swelling. In this study the effect of the level of haemoglobin O2 saturation on volume regulation has been investigated in adrenergically stimulated red blood cells from trout: at full haemoglobin O2 saturation, net influx of Na+ through the Na+/H+-exchanger was balanced by net efflux of K+ and no increases in cell volume took place. In contrast, at low O2 saturation (8–14%) adrenergic stimulation led to a substantial increase in cell Na+, K+ and volume. Moreover, cell volume recovery after adrenergic swelling was incomplete at low O2 saturation, whereas cells at high O2 saturation exhibited a fast and complete cell volume recovery. In cells exposed to alternating high and low O2 saturation, volume regulation was similar to the regulation found in cells maintained at high O2 saturation. In cells at high O2 saturation, extrusion of cellular Na+ by the Na+/K+-pump significantly contributed to the volume decrease. It is concluded that trout red blood cells at high or alternating O2 saturations possess a powerful regulatory volume decrease response that is shut off at low O2 saturation. The physiological implications of this regulation is discussed. Accepted: 30 September 1996  相似文献   

6.
When 10?6 M oubain is added to human red cells that have been incubated without glucose for two hours, there is a significant shift in the 31P nuclear magnetic resonances of both phosphate groups of cellular 2,3-diphosphoglycerate, which is not found in control cells incubated with glucose. This means that an effect induced by ouabain on the outside of the red cell membrane is transmitted through the membrane to alter the environment of an intracellular metabolite. Experiments with glycolytic cycle inhibitors have indicated that the intracellular ligand responsible for the resonance shifts is monophosphoglycerate mutase which requires 2,3-diphosphoglycerate as a cofactor for the reaction it catalyzes. To account for this finding a hypothesis is presented that the (Na+ + K+)-ATPase in human red cells is linked to monophosphoglycerate mutase through the agency of phosphoglycerate kinase. Evidence is presented for the existence of phosphoglycerate kinase/monophosphoglycerate mutase in solution. It is shown that this complex can interact with the cytoplasmic face of (Na+ + K+)-ATPase at the outside surface of inside out red cell vesicles, and that this interaction is inhibited when 10?6 M ouabain is contained within the vesicle. Neither monophosphoglycerate mutase nor phosphoglycerate kinase is significantly bound to the inside surface of the intact human red cell, but glyceraldehyde 3-phosphate dehydrogenase is; it is shown that this enzyme also interacts with the cytoplasmic face of the (Na+ + K+)-ATPase and that the interaction is inhibited by 10?6 M ouabain.  相似文献   

7.
The effect of ammonium chloride on the cellular Na+, K+ and water has been examined in human and horse (high K), cow (medium K) and cat (low K) red cells. It was found that high K red cells, especially those of the horse, gained water an Na+, whereas the net movement of K+ was negligible. There was a correlation between the increase of cellular Na+ concentration and of the packed red cell volume. In contrast, the packed cell volume of low K red cells increased slightly or not at all, and Na+ ions leaked out from the cells. The high K cells had a lower Cl? concentration and higher buffer capacity than the low K cells. The results obtained with the medium K (cow) cells usually lay between those of the other two cell types. In all the cases both the plasma and cell pH decreased resulting from the addition of ammonium chloride. The mechanism of movements of water and Na+ ions in high K cells remained unsolved, but the response of low K cells to ammonium chloride was near that of a cation exchange resin.  相似文献   

8.
The permeabilities of sarcoplasmic reticulum vesicle membrane for various ions and neutral molecules were measured by following the change in light scattering intensity due to the osmotic volume change of the vesicles. 4-Acetoamido-4′-isothiocyanostilbene-2,2′-disulfonate (SITS), which is a potent inhibitor for the anion permeability of red blood cells membrane, inhibited the permeability of sarcoplasmic reticulum for anions such as Cl?, Pi and methanesulfonate, while it slightly increased that for cations and neutral molecules such as Na+, K+, choline and glycerol. Binding of 5μmol SITS/g protein was necessary for the inhibition of anion permeability. These results suggest the existence of a similar anion transport system in sarcoplasmic reticulum membrane as revealed in red blood cell membrane.  相似文献   

9.
Resting cells ofFusobacterium nucleatum ATCC 10953, when provided with glutamic acid (Na+ salt) as fermentable energy source, rapidly accumulated [14C]glucose, from the medium. Sugar accumulation was not observed when Na+ glutamate was replaced by ammonium glutamate. However, addition of Na+ (chloride) to the latter system elicited uptake of [14C]glucose by the organism. Of other monovalent cations tested, only Li+ was found to be slightly stimulatory, but K+, Rb+, and Cs+ ions were ineffective. For determination of the role(s) of Na+ in sugar accumulation, the transport of [14C]glucose and [14C]glutamic acid by the cells was studied independently, with lysine as an alternate (and Na+-independent) energy source. In the presence of lysine, cells ofF. nucleatum 10953 accumulated [14C]glucose from a Na+-free medium, but, in contrast, uptake and fermentation of [14C]glutamic acid was Na+-dependent. The glucose transport system is Na+-independent. However, our data indicate dual role(s) for Na+ in the transport and intracellular metabolism of glutamic acid. The Na+-dependent glutamate fermentation pathway provides the necessary energy for active transport of glucose by the resting cell.  相似文献   

10.
Hexachlorophene-induced hemolysis, as studied by phase contrast microscopy, appeared to be a result of osmotic swelling. Both swelling and subsequent hemolysis were markedly delayed by addition of the non-penetrating solute sucrose to the incubation mixture. Binding studies indicated that hexachlorophene is associated primarily with the erythrocyte membrane, the remainder being found in the cytoplasm. Hexachlorophane induced a dose-dependent, first-order efflux of Na+ and K+ from red cells. The rates of hemolysis and K+ efflux induced by hexachlorophene were much greater than would be expected if this compound were acting simply as a metabolic inhibitor and/or an inhibitor of (Na+-K+-Mg2+)-ATPase. It is suggested that hexachlorophene induces the efflux of Na+ and K+ from red cells by directly altering the permeability of the cellular membrane. Further, hexachlorophene-induced hemolysis is probably a secondary event resulting from osmotic swelling subsequent to increased membrane permeability.  相似文献   

11.
Summary The influence of Ca2+ and other cations on electrolyte permeability has been studied in isolated membrane vesicles from cat pancreas.Ca2+ in the micromolar to millimolar concentration range, as well as Mg2+, Sr2+, Mn2+ and La3+ at a tested concentration of 10–4 m, increased Na+ permeability when applied at the vesicle inside. When added to the vesicle outside, however, they decreased Na+ permeability. Ba2+ was effective from the outside but not from the vesicle inside.When Ca2+ was present at both sides of the membrane, Na+ efflux was not affected as compared to that in the absence of Ca2+. Monovalent cations such as Rb+, Cs+, K+, Tris+ and choline+ decreased Na+ permeability when present at the vesicle outside at a concentration range of 10 to 100mm. Increasing Na+ concentrations from 10 to 100mm at the vesicle inside increased Na+ permeability.The temperature dependence of Na+ efflux revealed that the activation energy increased in the lower temperature range (0 to 10°C) when Ca2+ was present at the outside or at both sides, but not when present at the vesicle inside only or in the absence of Ca2+.The results suggest that the Ca2+ outside effect is due to binding of calcium to negatively charged phospholipids with a consequent reduction of both fluidity and Na+ permeability of the membrane. The Ca2+-inside effect most likely involves interaction with proteins with consequent increase in Na+ permeability.The data are consistent with current hypotheses on secretagogue-induced fluid secretion in acinar cells of the pancreas according to which secretagogues elicit NaCl and fluid secretion by liberating Ca2+ from cellular membranes and by stimulating Ca2+ influx into the cell. The increased intracellular Ca2+ concentration in turn increases the contraluminal Na+ permeability which leads to NaCl influx. The luminal sodium pump finally transports Na+ ions into the lumen.  相似文献   

12.
Cell volume regulation in Ehrlich ascites tumor cells   总被引:4,自引:0,他引:4  
Ehrlich cells subjected to anisoosmolar media show very rapid volume changes. In hypertonic media they shrink. In hypotonic media they swell but the rapid initial swelling is followed by a regulatory shrinkage lasting ca. 30 minutes. Cells suspended in media with identical ionic concentrations but different total osmolarity (adjusted by sucrose) were compared. These studies revealed that swollen cells adjust their volume by decreasing the amount of intracellular K+ and ninhydrin positive substances. Intracellular Na+ and ATP concentrations were unchanged. Accordingly 42K+ flux analysis showed that the (passive) cell membrane permeability for K+ is increased to a minor degree and the Na+ permeability unaffected. The increased K+ permeability could not be correlated to an increase in 45Ca2+ influx.  相似文献   

13.
Treatment of sickle red cells (SS homozygous) with a voltage pulse of less than 0.8 kV/cm and duration of 20 μs caused a change in the cell membrane, so as to facilitate the permeation of oxygen. The unsickling of the treated cells after a re-introduction of oxygen took place at a much faster rate. Neither leakages of Na+ and K+, nor a change in the cell volume occurred as the result of the low voltage pulsation. The effect of the voltage treatment persisted for hours at 25°C but disappeared rapidly at 37°C. The result suggests that a selective modification of membrane permeability may be achieved by the voltage pulsation technique.  相似文献   

14.
Summary Endogenous glucose uptake by the oocytes ofXenopus laevis consists of two distinct components: one that is independent of extracellular Na+, and the other one that represents Na+-glucose cotransport. The latter shows similar characteristics as 2 Na+-1 glucose cotransport of epithelial cells: The similarities include the dependencies on external concentrations of Na+, glucose, and phlorizin, and on pH. As in epithelial cells, the glucose uptake in oocytes can also be stimulated by lanthanides. Both the electrogenic cotransport and the inhibition by phlorizin are voltage-dependent; the data are compatible with the assumption that the membrane potential acts as a driving force for the reaction cycle of the transport process. In particular, hyperpolarization seems to stimulat transport by recruitment of substrate binding sites to the outer membrane surface. The results described pertain to oocytes arrested in the prophase of the first meiotic division; maturation of the oocytes leads to a downregulation of both the Na+-independent and the Na+-dependent transport systems. The effect on the Na+-dependent cotransport is the consequence of a change of driving force due to membrane depolarization associated with the maturation process.  相似文献   

15.
Na+/H+ exchangers (NHE) are ubiquitous transporters participating in regulation of cell volume and pH. Cell shrinkage, acidification, and growth factors activate NHE by increasing its sensitivity to intracellular H+ concentration. In this study, the kinetics were studied in dog red blood cells of Na+ influx through NHE as a function of external Na+ concentration ([Na+]o). In cells in isotonic media, [Na+]o inhibited Na+ influx >40 mM. Osmotic shrinkage activated NHE by reducing this inhibition. In cells in isotonic media + 120 mM sucrose, there was no inhibition, and influx was a hyperbolic function of [Na+]o. The kinetics of Na+-inhibited Na+ influx were analyzed at various extents of osmotic shrinkage. The curves for inhibited Na+ fluxes were sigmoid, indicating more than one Na+ inhibitory site associated with each transporter. Shrinkage significantly increased the Na+ concentration at half-maximal velocity of Na+-inhibited Na+ influx, the mechanism by which shrinkage activates NHE. erythrocytes; cell volume regulation; amiloride; kinetics of sodium ion influx  相似文献   

16.
The characteristics of cation outward rectifier channels were studied in protoplasts from wheat root (Triticum aestivum L. and Triticum turgidum L.) cells using the patch clamp technique. The cation outward rectifier channels were voltage-dependent with a single channel conductance of 32 ± 1 picosiemens in 100 millimolar KCl. Whole-cell currents were dominated by the activity of the cation outward rectifiers. The time- and voltage-dependence of these currents was accounted for by the summed behavior of individual channels recorded from outside-out detached patches. The K+/Na+ permeability ratio of these channels was measured in a salt-sensitive and salt-tolerant genotype of wheat that differ in rates of Na+ accumulation, using a voltage ramp protocol on protoplasts in the whole-cell configuration. Permeability ratios were calculated from shifts in reversal potentials following ion substitutions. There were no significant differences in the K+/Na+ permeability ratios of these channels in root cells from either of the two genotypes tested. The permeability ratio for K+/Cl was greater than 50:1. The K+/Na+ permeability ratio averaged 30:1, which is two to four times more selective than the same type of channel in guard cells and suspension culture cells. Lowering the Ca2+ concentration in the bath solution to 0.1 millimolar in the presence of 100 millimolar Na+ had no significant effect on the K+/Na+ permeability ratios of the channel. It seems unlikely that the mechanism of salt tolerance in wheat is based on differences in the K+/Na+ selectivity of these channels.  相似文献   

17.
Red cells of adult sheep, like those of other ruminants, lack the calcium-activated potassium channel which is present in the membrane of human red cells. Since the activities of other transport systems in the sheep red cell are known to decrease during maturation of the cell or during development of the animal it was investigated whether the K+ channel is present in red cells from younger animals or in reticulocytes. Using the divalent cation ionophore A23187 to increase the intracellular Ca of intact cells, it was found that the K+-selective channel is present in foetal red cells from the foetus or newborn animal but not in reticulocytes. The presence of the channel showed no dependence on the K+ genotype of the sheep and was not associated with either “high K+”-or “low K+”-type Na+ pump. No Ca2+-dependent change in K+ permeability was found in red cells from either newborn or adult donkeys suggesting that its presence in the red cells of the foetus may not be general. The role of the K+ channel in the mammalian red cell and the relationship between the K+ channel and the Na+ pump are discussed.  相似文献   

18.
A Coulter-orifice pulse-height analyzer system was used to measure volume spectra of mammalian cells in suspension at different times after the addition of an equal volume of water. In appropriate hypotonic medium, cultured mammalian cells rapidly increase in volume and then shrink, more slowly, approaching their initial volumes within 20 to 30 minutes at 37.5°C. The shrinking phase was found to be reversibly inhibited by ouabain and inhibited in both K+-free and Na+-free solutions; neither choline+ nor Li+ could substitute for extracellular Na+ in supporting the shrinking phenomenon but Rb+ and Cs+ were fairly good substitutes for K+. Under conditions similar to those with which the shrinking phenomenon was observed with cultured cells, it was not found with either human or mouse red blood cells. Two methods were used to determine intracellular Na+ and K+ content in osmotically shocked cells and in unshocked controls. An isotope equilibration method was employed with L5178-Y mouse lymphoblasts and a chemical determination by flame photometry was used with Ehrlich ascites tumor cells. The K+ content was significantly reduced and the Na+ content was unchanged or somewhat increased in cells which had returned to their original volumes in hypotonic medium. The K+ content was even more reduced but the Na+ content was greatly increased in cells which were osmotically shocked in the presence of ouabain.  相似文献   

19.
Using the antibiotic Nystatin, we have developed a systematic method for the preparation of red blood cells with independently selected levels of intracellular Na+ concentrations and water content. Such cells provided an experimental model to study the effect of Na+/K+ pump stimulation on red cell water content. Even in initially dehydrated cells, stimulation of the Na+/K+ pump by elevated intracellular Na+ caused subsequent further loss of cell water. Cell water loss was reflected in decreased monovalent cation content per unit mass of hemoglobin and by a shift in the density distribution of the cell populations to higher densities on discontinuous Stractan gradients. We conclude that the 3 Naout+ : 2 Kin+ stoichiometry of the Na+/K+ pump results in a net desalting effect with increased pump activity. Under the conditions of these experiments, the cell appears to have no effective mechanism to compensate for a net loss of ions and water.  相似文献   

20.
During perifusion with medium deprived of Ca2+, addition of glucose or omission of Na+ resulted in prompt and quantitatively similar inhibitions of 45Ca efflux from β-cell rich pancreatic islets microdissected from ob / ob mice. Glucose had no additional inhibitory effect when Na+ was isoosmotically replaced by sucrose or choline+. When K+ was used as a substitute for Na+, the inhibitory effect of Na+ removal on 45Ca efflux became additive to that of glucose. The observation that glucose can be equally effective in inhibiting 45Ca efflux in the presence or absence of Na+ is difficult to reconcile with the postulate that the Na+-Ca2+ countertransport mechanism is a primary site of action for glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号