首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The impact of predation over a 3 week period by the small (mean length 53 mm) salmoniform fish, Galaxias olidus, on the invertebrate communities in the still summer pools of an intermittent stream in southeastern Australia was tested using enclosures that incorporated both deep and shallow habitat areas. Twenty G. olidus, a key generalist predator in the system studied, were enclosed for 3 weeks in 1.5 × 1.7 m enclosures. Galaxias olidus was found to reduce significantly the distribution and abundance of air-breathing nektonic species. In contrast, the abundance of non-air-breathing nektonic species increased in the presence of fish in the deep areas of the enclosures. There was no significant impact offish predation on species richness, total abundance, epibenthic or interstitial species. The most likely reason for the general lack of response to the presence of fish by epibenthic and interstitial species is the availability of abundant spatial refugia from predation within the complex substrate of the stream. In contrast, air-breathing nektonic species are vulnerable to predation by fish due to the lack of refuges in the open water. Increases in the abundance of non-air-breathing nektonic species in the presence of fish may be related to reductions in the abundance of predatory dytiscid beetles. Significant differences between deep and shallow habitats were observed in total abundance and species richness, and in the abundances of air-breathing nektonic and epibenthic species, suggesting that physicochemical factors play a key role in determining invertebrate distribution within stream pools.  相似文献   

2.
3.
In laboratory experiments, eleven out of twenty-one invertebrate species and all of the three fish species tested fed on freshly laid flaccid cocoons of Erpobdella octoculata, though predation was only severe from a dytiscid beetle, E. octoculata and the fish species. There was a tendency for more cocoons to be eaten by starved than fed predators. Only snail species damaged one-week-old tougher cocoons.Only one out of 471 E. octoculata collected during their breeding season from the stony shores of two eutrophic lakes had a cocoon in its gut.The role of cannibalism of and interspecific predation on cocoons in the control and regulation of lake-dwelling populations of the erpobdellid is discussed, and assessed to be relatively unimportant. A more likely regulatory mechanism may involve high juvenile mortality from as yet unknown causes.  相似文献   

4.
1. Visually foraging fish typically exclude large zooplankton from clear‐water lakes and reservoirs. Do fish have the same effect in turbid waters, or does turbidity provide a refuge from visual predation? 2. To test the hypothesis that fish exclude large zooplankton species from turbid sites, I searched for populations of medium or large Daphnia species in turbid, fish‐containing reservoirs of south‐central Oklahoma and north‐central Texas, U.S.A., and surveyed the literature for accounts of Daphnia species in turbid habitats worldwide. 3. Only small Daphnia species and the exuberantly spined Daphnia lumholtzi were detected in the turbid reservoirs. The Daphnia species in the reservoirs are smaller than other Daphnia species that occur in the area but were not detected. An extensive survey of the literature suggests that large Daphnia may be found in the lakes of extreme turbidity [Secchi disk depth (SD) < 0.2 m] but that only small and spiny Daphnia are likely to occur in more typical turbid locations (1.0 m > SD > 0.2 m) unless some additional factor reduces the influence of fish predation in such sites. 4. The field samples from Texas and Oklahoma together with the literature review suggest that the effect of visually foraging planktivorous fish on the size structure of turbid‐water zooplankton communities may often be as strong or even stronger than the effect of fish on clear‐water zooplankton communities.  相似文献   

5.
Adult dytiscids prey on a variety of items including other invertebrates but also larger prey such as frogs and fish. Observations of anuran larvae predation are common. However, there have been no reports concerning predation on caudata post‐metamorphosis by dytiscids. Here we describe a predation event by a group of adult diving beetles of the species Agabus (Gaurodytes) bipustulatus (Linnaeus, 1767) on an adult Lissotriton boscai (Lataste in Tourneville, 1879). This report represents the first observation of foraging behavior of adult diving beetles preying on and consuming a living post‐metamorphic newt.  相似文献   

6.
  1. Freshwater species with complex life cycles face a trade-off between the risks of offspring mortality due to desiccation in temporary habitats and due to predators common in long-duration habitats, especially fish. In real-world conditions, intermediate-gradient areas that are highly suitable for some ecological specialists are often limited. I examined the relative significance of drivers of the permanence–predation gradient in habitat selection by pond-breeding anurans.
  2. Anuran oviposition was investigated at the community level in fish pond landscapes with only three types of habitat, permanent fish-containing ponds and highly desiccation-prone pools, either fishless or recently emptied of fish and with fish odour (fish cue). Altogether, 65 ponds/pools, interspersed in four clusters, were examined for the presence of egg masses.
  3. Bufo bufo was the only species preferring permanent ponds. Egg masses of Rana sp. (Rana arvalis/Rana temporaria) occurred in all fishless pools, and less frequently in the ponds. Bufotes viridis and long larval period species Pelobates fuscus and Hyla orientalis oviposited almost exclusively in fishless pools. Fish-cue pools were avoided by all species. Anuran richness was higher in fishless pools than in permanent ponds. Species distribution between the two habitats was nested, with both common and rare species occurring in fishless pools.
  4. The results indicate the primacy of offspring predation risk over hydroperiod constraints in oviposition decision-making by fish-intolerant anurans. The absence of some species from ponds and pools with fish or fish cues shows that non-consumptive interactions may better explain the scarcity of anuran larvae in waters dominated by fish than actual consumption. The strict avoidance of fish habitats despite their proximity to fishless patches indicates fine-scale assessment of predation risk. However, rigid habitat selection against fish predation on offspring may prove maladaptive if habitats with high desiccation risk are the main alternative and are indiscriminately preferred. Maintenance of fishless wetlands with a hydroperiod sufficient to allow completion of metamorphosis should be a conservation priority for anuran diversity in areas where fishless habitats are limited.
  相似文献   

7.
8.
The distribution, reproductive modality and karyology of populations of freshwater planarians were studied together with physico-chemical variables m 149 springs in the central Pyrenees Diversity was limited to four species (Dugesia (Dugesia) subtentaculata, Polycelis felina. Crenobia alpina and Phagocata vitta), already known from streams and lakes Planarians were found rarely (only a third of springs contain them), m low-moderate abundance, and any single spring did not harbour more than one species The distribution of potential predators and preys among the springs sampled was fairly uniform So. we assume that whereas predation is unlikely to influence triclad distribution, the oligotrophic character of these habitats may explain, through food shortage and ensuing interspecific competition, the presence of a single species in each spring Besides interspecific competition, the distribution of each species can also be influenced by particular abiotic parameters Temperature and current velocity appeared to be the dominant factors, the first separating C alpina from the rest of species, and the second favouring the presence of P felina in a large set of springs These factors also seem to determine planarian distribution in streams and rivers Other environmental factors such as calcium bicarbonated water (for D subtentaculata) and preference for karst systems (for Phagocata vitta) are of importance Some peculiarities of distribution, like the scarcity of C alpina in reophile habitats and the thermal tolerance of Phagocata vitta, may be due both to competition from P felina and to historical factors in the former and to morphological (presence of pigment) and ecological (epigean habits) features m the latter, respectively Karyological analyses demonstrated triploidy in all populations of D subtentaculata. a polyploid origin for C alpina and the finding in Phagocata vitta of a new polyploid series leading to the highest chromosome number in turbellarians (14n = 238) Furthermore, the basic chromosome number of C alpina (n = 21) and Phagocata vitta (n = 17) differs from those found in northern European populations (n = 7 in both, respectively) This suggests that under the specific names C alpina and Phagocata vitta more than one species actually occurs, this being a problem for further studies Whereas polyploidy has often been related to living in cold, harsh habitats, asexual reproduction has been linked to environments where biotic stress is low The preeminence of asexual reproduction (by fissiparity) and polyploid forms in freshwater planarians inhabiting the unproductive, biotically unsaturated springs of the central Pyrenees adds new evidence to strengthen such links  相似文献   

9.
Amphibians are currently experiencing a severe worldwide decline. Several factors, such as habitat alteration, climate change, emerging diseases or the introduction of exotic species, have been signalled as being responsible for the reduction of amphibian populations. Among these, the introduction of fish predators has been repeatedly indicated as a factor affecting the distribution of many species. The present study was developed to examine the effect of fish presence and other environmental factors on the distribution and abundance of amphibian species in mountain lakes of the Cantabrian Range in northern Spain. We found no effect of salmonid presence on the distribution and abundance of two widespread anuran species Bufo bufo and Alytes obstetricans , whereas Rana temporaria showed a non-significant tendency to be absent from salmonid-occupied lakes. However, the presence of introduced salmonids was the main negative factor explaining the distribution of the newt species Triturus helveticus , Triturus alpestris and Triturus marmoratus . The effect on these species is likely to be due to increased larval mortality, as adult and egg predation by fish, or oviposition avoidance by female newts has rarely been recorded. Fish removal and the creation of alternative breeding habitats for amphibians are proposed as conservation measures to recover amphibian populations in the vicinity of fish-stocked lakes.  相似文献   

10.
1. Endangered native populations of stream salmonids in Japan face three major threats: (i) negative interactions with introduced hatchery‐reared fish, (ii) fragmentation of habitat by impassable dams and (iii) recreational angling. 2. To prevent imminent extinction of many local populations, we evaluated these threats and possible conservation actions for red‐spotted masu salmon (Oncorhynchus masou ishikawae) and white‐spotted charr (Salvelinus leucomaenis japonicus) in the Fuji River system in central Japan. 3. Red‐spotted masu salmon and white‐spotted charr occupied only 0.73 and 2.4% of suitable thermal habitats, respectively, with masu salmon typically occupying habitats closer to human population centres. 4. Population viability analysis resulted in a 100‐year probability of extinction of 78.1% for masu salmon and 48.1% for charr. However, extinction risk of both species was predicted to be <5% if the carrying capacity increased from 141 to 303 for masu salmon and from 94 to 125 for charr, by allowing fish passage at the lower end of the habitat, and if annual adult survival rate increased by 0.04. Adult survival rate was the principal factor associated with population persistence. 5. To conserve isolated populations of stream‐dwelling salmonids, we recommend (i) assessing the distribution of remnant native and non‐native fish populations, (ii) that fishing regulations are modified to improve adult survival and population persistence and (iii) that fragmented reaches be reconnected to adjacent habitat, for example by removing or modifying artificial barriers to increase the carrying capacity of the isolated populations. Reconnection of fragmented reaches should, however, be avoided if it results in non‐native fish invading isolated populations.  相似文献   

11.
1. Behavioural adaptations to avoid and evade predators are common. Many studies have investigated population divergence in response to changes in predation regime within species, but studies exploring interspecific patterns are scant. Studies on interspecific divergence can infer common outcomes from evolutionary processes and highlight the role of environmental constraints in shaping species traits. 2. Species of the dragonfly genus Leucorrhinia underwent well‐studied shifts from habitats being dominated by predatory fish (fish lakes) to habitat being dominated by predatory invertebrates (dragonfly lakes). This change in top predators resulted in a set of adaptive trait modifications in response to the different hunting styles of both predator types: whereas predatory fish actively search and pursue prey, invertebrate predator follow a sit‐and‐wait strategy, not pursuing prey. 3. Here it is shown that the habitat shift‐related change in selection regime on larval Leucorrhinia caused species in dragonfly lakes to evolve increased larval foraging and activity, and results suggest that they lost the ability to recognise predatory fish. 4. The results of the present study highlight the impact of predators on behavioural trait diversification with habitat‐specific predation regimes selecting for distinct behavioural expression.  相似文献   

12.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

13.
Macrophytes in shallow lakes have the potential to alter fish–zooplankton interactions considerably. How far predation effects by newly hatched fish (0+ fish) on zooplankton are influenced by different types of aquatic vegetation, and how effects change during the first weeks of fish ontogeny remains, however, less clear. In order to address these issues, we examined the predation effects of 0+ fish on zooplankton in three different habitats during spring and summer in a shallow, eutrophic lake in Sweden. Zooplankton and fish samples were taken along the reed vegetation, in a shallow, unvegetated part of the lake and above dense, submersed vegetation to relate 0+ fish predation effects to vegetation complexity. All the size classes of zooplankton decreased when 0+ fish started to feed on them in all the different habitats. The magnitude of predation effects depended, however, on both the size of zooplankton and the complexity of the vegetation. While small cladocerans could maintain stable populations in the dense Chara vegetation after 0+ fish had started to feed on them, medium and large-sized zooplankton disappeared from all the habitats. Our results suggest that only small cladocerans can use dense vegetation as a refuge against 0+ fish predation, while medium and large zooplankton are not safe from 0+ fish predation in any habitat.  相似文献   

14.
We examined trophic positions and fatty acid concentrations of riverine, lacustrine, and aquaculture diet and fish in Austrian pre-alpine aquatic ecosystems. It was hypothesized that dietary fatty acid (FA) profiles largely influence the FA composition of the salmonids Salvelinus alpinus, Salmo trutta, and Oncorhynchus mykiss. We analyzed trophic positions using stable isotopes (δ15N) and tested for correlations with polyunsaturated fatty acid (PUFA) concentrations. Gut content analysis revealed benthos (rivers), pellets (aquaculture), and zooplankton (lakes) as the predominant diet source. Results of dorsal muscle tissues analysis showed that the omega-3 PUFA, docosahexaenoic acid (DHA; 22:6n − 3), was the mostly retained PUFA in all fish of all ecosystems, yet with the highest concentrations in S. alpinus from aquaculture (mean: 20 mg DHA/g dry weight). Moreover, we found that eicosapentaenoic acid (EPA; 20:5n − 3) in fish of natural habitats (rivers, lakes) was the second most abundant PUFA (3–5 mg/g DW), whereas aquaculture-raised fish had higher concentrations of the omega-6 linoleic acid (18:2n – 6; 9–11 mg/g DW) than EPA. In addition, PUFA patterns showed that higher omega-3/-6 ratios in aquacultures than in both riverine and lacustrine fish. Data of this pilot field study suggest that salmonids did not seem to directly adjust their PUFA to dietary PUFA profiles in either natural habitats or aquaculture and that some alterations of PUFA are plausible. Finally, we suggest that trophic positions of these freshwater salmonids do not predict PUFA concentrations in their dorsal muscle tissues.  相似文献   

15.
16.
17.
Invasive species have widespread and pronounced effects on ecosystems and adaptive evolution of invaders is often considered responsible for their success. Despite the potential importance of adaptation to invasion, we still have limited knowledge of the agents of natural selection on invasive species. Bythotrephes longimanus, a cladoceran zooplankton, invaded multiple Canadian Shield lakes over the past several decades. Bythotrephes have a conspicuous caudal process (tail spine) that provides a morphological defense against fish predation. We measured viability selection on the longest component of the Bythotrephes spine, the distal spine segment, through a comparison of the lengths of first and second instar Bythotrephes collected from lakes differing in the dominance of gape‐limited predation (GLP) and nongape‐limited predation (NGLP) by fish. We found that natural selection varied by predator gape‐limitation, with strong selection (selection intensity: 0.20–0.79) for increased distal spine length in lakes dominated by GLP, and no significant selection in lakes dominated by NGLP. Further, distal spine length was 17% longer in lakes dominated by GLP, suggesting the possibility of local adaptation. As all study lakes were invaded less than 20 years prior to our collections, our results suggest rapid divergence in defensive morphology in response to selection from fish predators.  相似文献   

18.
1. Previous studies have suggested that the occurrence of larval Chaoborus in lakes may be affected by fish predation, pH, elevation, temperature, nutrient level, water transparency and interspecific competition, but so far, a detailed statistical evaluation of these findings has not been performed. 2. The aim of this study was to apply regression and ordination techniques to a large data set of 56 lakes in order to test which variables related to lake morphology, water chemistry, and fish predation determine (1) the abundance of individual Chaoborus species and (2) their species composition. 3. Individual Chaoborus species were influenced by very different sets of environmental factors. Nutrient levels positively affected the largest species, Chaoborus americanus, which was restricted to fishless lakes. Abundance of the smallest and most transparent species, C. punctipennis, seemed to be controlled more by the larger Chaoborus species than by fish. Larger chaoborids required low water clarity in order to co‐exist with fish, probably to increase refuge availability. Generally, small lakes (for C. flavicans/C. trivittatus) and shallow lakes (for C. punctipennis) supported higher abundances of Chaoborus.  相似文献   

19.
The major classes of tropical lakes include shallow, lowland lakes; deep, tertiary lakes; high altitudinal lakes; rainforests lakes; and man-made lakes at all latitudes and altitudes. Basic ecological processes are similar in temperate and tropical lakes, including grazing, competition, predation and abiotic adaptation. Small tropical lakes of intermediate age are probably not biotically more complicated than similar-sized temperate lakes. The structure of the areas of adaptative radiation and the dispersal ability of the species are important for the present distribution of taxa. Fish play a key role in the tropics since many species both consume zooplankton and compete with them for algal and pelagic sestonic food. This important co-evolution between fish and algae, leaving a fraction of the algal community with a predation refuge, may have decreased the ability of zooplankton to exploit algae. In addition, heavy predation from juvenile and adult fish may greatly simplify the zooplankton community, and have resulted in the scarcity of Cladocera, notably the efficient filter-feeder Daphnia. Little is known of possible physiological constraints to cladoceran distribution, however. Thus similar co-evolution as hypothesized between fish and algae seems not to have occurred to such a great extent between fish and zooplankton. Diurnal patterns in habitat selection of fish may also influence nutrient re-distribution in the tropics as in many temperate lakes. Serious environmental problems threaten tropical lakes, including eutrophication, clear-cutting of the rain forest, unwise introduction of new species not adapted to prevailing conditions, overfishing, extensive use of biocids, and probably acidic rain in areas with poorly buffered waters. Important processes in tropical lakes could be elucidated by concentrating research upon the fate of phytoplankton successional production, involving competition, grazing, sinking, fungi and bacterial attack. Co-evolution of fish and algae should be further investigated as it could in part explain the general scarcity and simplicity of the zooplankton community. Limnocorral experiments should also be used for further assessing processes in tropical lakes.  相似文献   

20.
The interaction between native fishes and salmonids introduced in Patagonia at the beginning of the 20th Century, developed at the same time as the environmental change. The phenomenon of global warming has led to the formulation of predictions in relation to changes in the distribution of species, in the latitudinal dimension, both at intralacustrine, or small streams levels. The aim of the present work includes three main objectives: a) to compose a general and updated picture of the latitudinal distribution range of native and alien fishes, b) to analyze the historical changes in the relative abundance of Percichthys trucha, Odontesthes sp., and salmonids in lakes and reservoirs, and c) to relate the diversity and relative abundance of native and salmonid fishes to the environmental variables of lakes and reservoirs. We analysed previous records and an ensemble of data about new locations along the northern border of the Patagonian Province. We compared current data about the relative abundance of native fishes and salmonids in lakes and reservoirs, with previous databases (1984–1987). All samplings considered were performed during spring-summer surveys and include relative abundance, as proportions of salmonids, P. trucha, and Odontesthes sp. For the first time, we found changes in fish assemblages from twenty years back up to the present: a significant decline in the relative abundances of salmonids and an increase of P. trucha. We studied the association between the diversity and relative abundance of native and salmonid fishes and the environmental variables of lakes and reservoirs using Canonical Correspondence Analysis. Relative abundance showed mainly geographical cues and the diversity relied largely on morphometric characteristics. Relative abundance and diversity seem to have a common point in the lake area, included into the PAR concept. Native abundance and alien diversity were negatively related with latitude. Greater native diversity was observed in lakes with high PAR compared with salmonids. Historical changes such as southward dispersion, relative abundance changes, and geographical patterns for relative abundance and diversity are basic concepts needed not only in future research but also in management design for Patagonian fish populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号