首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Par polarity complex consisting of the evolutionarily conserved proteins mPar3, mPar6, and aPKC regulates cell polarity in many cell types including neurons. Here we show that mPar3 is required for the establishment of neuronal polarity and links the Smurf2 to Kinesin-2. The HECT domain E3 ubiquitin ligase Smurf2 ensures that neurons extend only a single axon by initiating the degradation of inactive Rap1B through the ubiquitin/proteasome system. Its interaction with mPar3 is required to localize Smurf2 to growth cones and restrict Rap1B to the axon. Interfering with the binding of mPar3 to Kinesin-2 or Smurf2 to mPar3 and knockdown of mPar3 by RNAi disrupt the establishment of neuronal polarity through the failure to restrict Rap1B to a single neurite.  相似文献   

4.
Oxidative stress injury is involved in many cardiovascular diseases, like hypertension and myocardial infarction. Ubiquitination is a ubiquitous protein post‐translational modification that controls a wide range of biological functions and plays a crucial role in maintaining the homeostasis of cells in physiology and disease. Many studies have shown that oxidative stress damage is inextricably linked to ubiquitination. We demonstrate that Smurf2, an E3 ubiquitinated ligase, is involved in HUVEC apoptosis induced by oxidative stress to alleviate H2O2‐induced reactive oxygen species (ROS) production and the apoptosis of human umbilical vein endothelial cells (HUVECs). At the same time, we found that Smurf2 can bind the poly(ADP‐ribose) polymerase‐1(PARP1), and the interaction is enhanced under the stimulation of oxidative stress. We further study and prove that Smurf2 can promote PARP1 ubiquitination and degradation. Collectively, we demonstrate Smurf2 degradation of overactivated PARP1 by ubiquitin‐proteasome pathway to protect HUVEC and alleviate oxidative stress injury.  相似文献   

5.
The 26S proteasome is a multicatalytic protease complex that degrades ubiquitinated proteins in eukaryotic cells. It consists of a proteolytic core (the 20S proteasome) as well as regulatory particles, which contain six ATPase (Rpt) subunits involved in unfolding and translocation of substrates to the catalytic chamber of the 20S proteasome. In this study, we used MS to analyze the N‐terminal modifications of the yeast Rpt1 subunit, which contains the N‐terminal recognition sequence for N‐methyltransferase. Our results revealed that following the removal of the initiation Met residue of yeast Rpt1, the N‐terminal Pro residue is either unmodified, mono‐methylated, or di‐methylated, and that this N‐methylation has not been conserved throughout evolution. In order to gain a better understanding of the possible function(s) of the Pro‐Lys (PK) sequence at positions 3 and 4 of yeast Rpt1, we generated mutant strains expressing an Rpt1 allele that lacks this sequence. The absence of the PK sequence abolished N‐methylation, decreased cell growth, and increased sensitivity to stress. Our data suggest that N‐methylation of Rpt1 and/or its PK sequence might be important in cell growth or stress tolerance in yeast.  相似文献   

6.
7.
Bryan B  Cai Y  Wrighton K  Wu G  Feng XH  Liu M 《FEBS letters》2005,579(5):1015-1019
The Rho-family of small GTPases consists of essential regulators of neurite outgrowth, axonal pathfinding, and dendritic arborization. Previous work has demonstrated in non-neuronal cell types that Smurf1, an E3 ubiquitin ligase, regulates cell polarity and protrusive activity via PKCzeta-dependent recruitment to cellular protrusion sites, and subsequent ubiquitination and proteasomal degradation of RhoA. In this study, we show that Smurf1 enhances neurite outgrowth in Neuro2a neuroblastoma cells. We demonstrate that RhoA is ubiquitinated, and that Smurf1 and RhoA physically interact in vivo. Interestingly, Smurf1 overexpression in Neuro2a cells dramatically reduces RhoA protein levels during dibutyric cyclic AMP, but not retinoic acid induced neurite outgrowth. This Smurf1-dependent reduction in RhoA protein levels was abrogated using the general proteasome inhibitor MG132, suggesting that RhoA is targeted for ubiquitination and degradation via Smurf1. Together, our data suggest that localized regulation of different subsets of Rho GTPases by specific guidance signals results in an intracellular asymmetry of RhoA activity, which could regulate neurite outgrowth and guidance.  相似文献   

8.
The APC/Cdh1 E3 ubiquitin ligase plays an essential role in both mitotic exit and G1/S transition by targeting key cell-cycle regulators for destruction. There is mounting evidence indicating that Cdh1 has other functions in addition to cell-cycle regulation. However, it remains unclear whether these additional functions depend on its E3 ligase activity. Here, we report that Cdh1, but not Cdc20, promotes the E3 ligase activity of Smurf1. This is mediated by disruption of an autoinhibitory Smurf1 homodimer and is independent of APC/Cdh1 E3 ligase activity. As a result, depletion of Cdh1 leads to reduced Smurf1 activity and subsequent activation of multiple downstream targets, including the MEKK2 signaling pathway, inducing osteoblast differentiation. Our studies uncover a cell-cycle-independent function of Cdh1, establishing Cdh1 as an upstream component that governs Smurf1 activity. They further suggest that modulation of Cdh1 is a potential therapeutic option for treatment of osteoporosis.  相似文献   

9.
10.
Gankyrin is a new oncoprotein with potent cell cycle and apoptotic properties that is overexpressed early in hepatocarcinogenesis and in hepatocellular carcinomas. Gankyrin regulates the phosphorylation of the retinoblastoma protein (pRb) by CDK4 and enhances the ubiquitylation of p53 by the RING ubiquitin ligase MDM2. Purified preparations of the 26S proteasome contain gankyrin, which specifically interacts with the S6b (Rpt3) ATPase of the 19S regulator. In conclusion, gankyrin is a small versatile cell cycle regulator that illustrates the essential interplay between the ubiquitin proteasome system and gene expression in the cell. Here, we discuss the activities of gankyrin and present a model for its function in the regulation of pRb and p53.  相似文献   

11.
Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α(7)β(7)β(7)α(7) structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a pocket lysine residue. We report that substitutions of α pocket lysine residues produce an unexpected block to CP assembly, arising from a late stage defect in β ring assembly. Substitutions α5(K66A) and α6(K62A) resulted in abundant incorporation of immature CP β subunits, associated with a complete β ring, into proteasome holoenzymes. Incorporation of immature CP into the proteasome depended on a proteasome-associated protein, Ecm29. Using ump1 mutants, we identified Ecm29 as a potent negative regulator of RP assembly and confirmed our previous findings that proper RP assembly requires the CP. Ecm29 was enriched on proteasomes of pocket lysine mutants, as well as those of rpt4-Δ1 and rpt6-Δ1 mutants, in which the C-terminal residue, thought to contact the pocket lysine, is deleted. In both rpt6-Δ1 and α6(K62A) proteasomes, Ecm29 suppressed opening of the CP substrate translocation channel, which is gated through interactions between Rpt C termini and the α pockets. The ubiquitin ligase Hul5 was recruited to these proteasomes together with Ecm29. Proteasome remodeling through the addition of Ecm29 and Hul5 suggests a new layer of the proteasome stress response and may be a common response to structurally aberrant proteasomes or deficient proteasome function.  相似文献   

12.
Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell‐based high‐throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin–proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell‐based reporters, detection of global ubiquitination status, and proteasome‐mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell‐based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG‐132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition.  相似文献   

13.
Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.  相似文献   

14.
15.
Neddylation is a posttranslational modification that attaches ubiquitin-like protein Nedd8 to protein targets via Nedd8-specific E1-E2-E3 enzymes and modulates many important biological processes. Nedd8 attaches to a lysine residue of a substrate, not for degradation, but for modulation of substrate activity. We previously identified the HECT-type ubiquitin ligase Smurf1, which controls diverse cellular processes, is activated by Nedd8 through covalent neddylation. Smurf1 functions as a thioester bond-type Nedd8 ligase to catalyze its own neddylation. Numerous ubiquitination substrates of Smurf1 have been identified, but the neddylation substrates of Smurf1 remain unknown. Here, we show that Smurf1 interacts with RRP9, a core component of the U3 snoRNP complex, which is involved in pre-rRNA processing. Our in vivo and in vitro neddylation modification assays show that RRP9 is conjugated with Nedd8. RRP9 neddylation is catalyzed by Smurf1 and removed by the NEDP1 deneddylase. We identified Lys221 as a major neddylation site on RRP9. Deficiency of RRP9 neddylation inhibits pre-rRNA processing and leads to downregulation of ribosomal biogenesis. Consequently, functional studies suggest that ectopic expression of RRP9 promotes tumor cell proliferation, colony formation, and cell migration, whereas unneddylated RRP9, K221R mutant has no such effect. Furthermore, in human colorectal cancer, elevated expression of RRP9 and Smurf1 correlates with cancer progression. These results reveal that Smurf1 plays a multifaceted role in pre-rRNA processing by catalyzing RRP9 neddylation and shed new light on the oncogenic role of RRP9.  相似文献   

16.
Jia L  Yu H 《Molecular cell》2011,44(5):681-683
Cdh1 is a well-established activator of APC/C, a RING-type ubiquitin ligase. In this issue of Molecular Cell, Wan et al. (2011) report an APC/C-independent role of Cdh1 during development as an activator for Smurf1, a HECT-type ubiquitin ligase.  相似文献   

17.
The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome.  相似文献   

18.
19.
The functional role of the ubiquitin‐proteasome pathway during maternal‐to‐zygotic transition (MZT) remains to be elucidated. Here we show that the E3 ubiquitin ligase, Rnf114, is highly expressed in mouse oocytes and that knockdown of Rnf114 inhibits development beyond the two‐cell stage. To study the underlying mechanism, we identify its candidate substrates using a 9,000‐protein microarray and validate them using an in vitro ubiquitination system. We show that five substrates could be degraded by RNF114‐mediated ubiquitination, including TAB1. Furthermore, the degradation of TAB1 in mouse early embryos is required for MZT, most likely because it activates the NF‐κB pathway. Taken together, our study uncovers that RNF114‐mediated ubiquitination and degradation of TAB1 activate the NF‐κB pathway during MZT, and thus directly link maternal clearance to early embryo development.  相似文献   

20.
The 26S proteasome-dependent protein degradation is an evolutionarily conserved process. The mammalian oncoprotein gankyrin, which associates with S6 of the proteasome, facilitates the degradation of pRb, and thus possibly acts as a bridging factor between the proteasome and its substrates. However, the mechanism of the proteasome-dependent protein degradation in yeast is poorly understood. Here, we report the tertiary structure of the complex between Nas6 and a C-terminal domain of Rpt3, which are the yeast orthologues of gankyrin and S6, respectively. The concave region of Nas6 bound to the alpha-helical domain of Rpt3. The stable interaction between Nas6 and Rpt3 was mediated by intermolecular interactions composed of complementary charged patches. The recognition of Rpt3 by Nas6 in the crystal suggests that Nas6 is indeed a subunit of the 26S proteasome. These results provide a structural basis for the association between Nas6 and the heterohexameric ATPase ring of the proteasome through Rpt3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号