共查询到20条相似文献,搜索用时 0 毫秒
1.
Rebecka Jörnsten Tobias Abenius Teresia Kling Linnéa Schmidt Erik Johansson Torbjörn E M Nordling Bodil Nordlander Chris Sander Peter Gennemark Keiko Funa Björn Nilsson Linda Lindahl Sven Nelander 《Molecular systems biology》2011,7(1)
DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known about how such changes affect global gene expression. We develop a modeling framework, EPoC (Endogenous Perturbation analysis of Cancer), to (1) detect disease‐driving CNAs and their effect on target mRNA expression, and to (2) stratify cancer patients into long‐ and short‐term survivors. Our method constructs causal network models of gene expression by combining genome‐wide DNA‐ and RNA‐level data. Prognostic scores are obtained from a singular value decomposition of the networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we demonstrate that the resulting network models contain known disease‐relevant hub genes, reveal interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four glioblastoma cell lines support selected predictions, and implicate the p53‐interacting protein Necdin in suppressing glioblastoma cell growth. We conclude that large‐scale network modeling of the effects of CNAs on gene expression may provide insights into the biology of human cancer. Free software in MATLAB and R is provided. 相似文献
2.
3.
A transcriptome‐wide study on the microRNA‐ and the Argonaute 1‐enriched small RNA‐mediated regulatory networks involved in plant leaf senescence 下载免费PDF全文
Leaf senescence is an important physiological process during the plant life cycle. However, systemic studies on the impact of microRNAs (miRNAs) on the expression of senescence‐associated genes (SAGs) are lacking. Besides, whether other Argonaute 1 (AGO1)‐enriched small RNAs (sRNAs) play regulatory roles in leaf senescence remains unclear. In this study, a total of 5,123 and 1,399 AGO1‐enriched sRNAs, excluding miRNAs, were identified in Arabidopsis thaliana and rice (Oryza sativa), respectively. After retrieving SAGs from the Leaf Senescence Database, all of the AGO1‐enriched sRNAs and the miRBase‐registered miRNAs of these two plants were included for target identification. Supported by degradome signatures, 200 regulatory pairs involving 120 AGO1‐enriched sRNAs and 40 SAGs, and 266 regulatory pairs involving 64 miRNAs and 42 SAGs were discovered in Arabidopsis. Moreover, 13 genes predicted to interact with some of the above‐identified target genes at protein level were validated as regulated by 17 AGO1‐enriched sRNAs and ten miRNAs in Arabidopsis. In rice, only one SAG was targeted by three AGO1‐enriched sRNAs, and one SAG was targeted by miR395. However, five AGO1‐enriched sRNAs were conserved between Arabidopsis and rice. Target genes conserved between the two plants were identified for three of the above five sRNAs, pointing to the conserved roles of these regulatory pairs in leaf senescence or other developmental procedures. Novel targets were discovered for three of the five AGO1‐enriched sRNAs in rice, indicating species‐specific functions of these sRNA–target pairs. These results could advance our understanding of the sRNA‐involved molecular processes modulating leaf senescence. 相似文献
4.
5.
6.
7.
8.
9.
10.
Letícia Passi Turra Andressa Romualdo Rodrigues Fermino Sanches Lizarte Neto Paulo Cezar Novais Maria Julia Nunes Victor Cunha Tirapelli Fernanda Maris Peria Vinícius Marques Carneiro Mucio Luiz de Assis Cirino Carlos Gilberto Carlotti Jr Daniela Pretti da Cunha Tirapelli 《Reports of Practical Oncology and Radiotherapy》2022,27(2):215
BackgroundGlioblastoma is an incurable neoplasm. Its hypoxia mechanism associated with cancer stem cells (CSCs) demonstrates hypoxia-inducible factor 1α (HIF-1α) expression regulation, which is directly related to tumor malignancy. The aim of this study was to identify a possible tumor malignancy signature associated with regulation of HIF-1α by microRNAs miR-21 and miR-326 in the subpopulation of tumor stem cells which were irradiated by ion in primary culture of patients diagnosed with glioblastoma.Materials and methodsWe used cellular cultures from surgery biopsies of ten patients with glioblastoma. MicroRNA expressions were analyzed through real-time polymerase chain reaction (PCR ) and correlated with mortality and recurrence. The ROC curve displayed the cutoff point of the respective microRNAs in relation to the clinical prognosis, separating them by group.ResultsThe miR-21 addressed high level of expression in the irradiated neurosphere group (p = 0.0028). However, miR-21 was not associated with recurrence and mortality. miR-326 can be associated with tumoral recurrence (p = 0.032) in both groups; every 0.5 units of miR-326 increased the chances of recurrence by 1,024 (2.4%).ConclusionThe high expression of miR-21 in the irradiated group suggests its role in the regulation of HIF-1α and in the radioresistant neurospheres. miR-326 increased the chances of recurrence in both groups, also demonstrating that positive regulation from miR-326 does not depend on ionizing radiation treatment. 相似文献
11.
Coen van Solingen Elisa Araldi Aranzazu Chamorro‐Jorganes Carlos Fernández‐Hernando Yajaira Suárez 《Journal of cellular and molecular medicine》2014,18(6):1104-1112
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process. 相似文献
12.
13.
14.
The myelin proteolipid protein gene (Plp ) is expressed primarily in oligodendrocytes. Yet how the gene remains repressed in nonexpressing cells has not been defined, and potentially could cause adverse effects in an organism if the mechanism for repression was impaired. Previous studies suggest that the first intron contains element(s), which suppress expression in nonexpressing cells, although the identity of these elements within the 8 kb intron was not characterized. Here we report the localization of multiple negative regulatory elements that repress Plp gene expression in nonexpressing cells (+/+ Li). Two of these elements (regions) correspond to those used by Plp expressing cells (N20.1), whilst another acts in a cell type-specific manner (i.e. operational in +/+ Li liver cells, but not N20.1 cells). By gel-shift and DNase I footprinting analyses, the factor(s) that bind to the cell type-specific negative regulatory region appear to be far more abundant in +/+ Li cells than in N20.1 cells. Thus, Plp gene repression is mediated through the combinatorial action of both "general" and cell type-specific negative regulatory elements. Additionally, repression in +/+ Li cells cannot be overcome via an antisilencer/enhancer element, which previously has been shown to function in N20.1 cells. 相似文献
15.
Tatiana C. Silveira Corrêa Renato Ramos Massaro Carla Abdo Brohem Sebastião Roberto Taboga Marcelo Lazzaron Lamers Marinilce Fagundes Santos Silvya Stuchi Maria‐Engler 《Journal of cellular biochemistry》2010,110(1):52-61
RECK is an anti‐tumoral gene whose activity has been associated with its inhibitory effects regulating MMP‐2, MMP‐9, and MT1‐MMP. RECK level decreases as gliobastoma progresses, varying from less invasive grade II gliomas to very invasive human glioblastoma multiforme (GBM). Since RECK expression and glioma invasiveness show an inverse correlation, the aim of the present study is to investigate whether RECK expression would inhibit glioma invasive behavior. We conducted this study to explore forced RECK expression in the highly invasive T98G human GBM cell line. Expression levels as well as protein levels of RECK, MMP‐2, MMP‐9, and MT1‐MMP were assessed by qPCR and immunoblotting in T98G/RECK+ cells. The invasion and migration capacity of RECK+ cells was inhibited in transwell and wound assays. Dramatic cytoskeleton modifications were observed in the T98G/RECK+ cells, when compared to control cells, such as the abundance of stress fibers (contractile actin–myosin II bundles) and alteration of lamellipodia. T98G/RECK+ cells also displayed phosphorylated focal adhesion kinase (P‐FAK) in mature focal adhesions associated with stress fibers; whereas P‐FAK in control cells was mostly associated with immature focal complexes. Interestingly, the RECK protein was predominantly localized at the leading edge of migrating cells, associated with membrane ruffles. Unexpectedly, introduced expression of RECK effectively inhibited the invasive process through rearrangement of actin filaments, promoting a decrease in migratory ability. This work has associated RECK tumor‐suppressing activity with the inhibition of motility and invasion in this GBM model, which are two glioma characteristics responsible for the inefficiency of current available treatments. J. Cell. Biochem. 110: 52–61, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
16.
17.
18.
19.
Jie Sun Hengqiang Zhao Shuting Lin Siqi Bao Yan Zhang Jianzhong Su Meng Zhou 《Journal of cellular and molecular medicine》2019,23(8):5270-5281
Colorectal cancer (CRC) is highly heterogeneous leading to variable prognosis and treatment responses. Therefore, it is necessary to explore novel personalized and reproducible prognostic signatures to aid clinical decision‐making. The present study combined large‐scale gene expression profiles and clinical data of 1828 patients with CRC from multi‐centre studies and identified a personalized gene prognostic signature consisting of 46 unique genes (called function‐derived personalized gene signature [FunPGS]) from an integrated statistics and function‐derived perspective. In the meta‐training and multiple independent validation cohorts, the FunPGS effectively discriminated patients with CRC with significantly different prognosis at the individual level and remained as an independent factor upon adjusting for clinical covariates in multivariate analysis. Furthermore, the FunPGS demonstrated superior performance for risk stratification with respect to other recently reported signatures and clinical factors. The complementary value of the molecular signature and clinical factors was further explored, and it was observed that the composite signature called IMCPS greatly improved the predictive performance of survival estimation relative to molecular signatures or clinical factors alone. With further prospective validation in clinical trials, the FunPGS may become a promising and powerful personalized prognostic tool for stratifying patients with CRC in order to achieve an optimal systemic therapy. 相似文献